Skip to main content

Research progress of spectra and properties of ultrahard carbon materials at high pressure and high temperature

Zhiqiang Hou ,
Haikuo Wang ,
Yao Tang ,
Jiakun Wu ,
Chao Wang ,
Zhicai Zhang ,
Xiaoping Ouyang
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2163857


Carbon, the fourth most abundant element in the Universe, possesses numerous allotropes with diverse bonding character (sp1-, sp2- and sp3-hybridized bonds) and structural motif of the constituting atoms. In particular, the carbon materials with a fully or nearly 100% sp3-hybridized strong C-C bonds often lead to excellent mechanical properties, chemical stability, thermal and optical properties, such as crystalline diamond and diamond-like amorphous carbon (DLC). In this review, we systematically summarize the synthesis, microstructure, mechanical properties, thermal and optical properties of ultrahard carbon materials with current experimental results on nano-polycrystalline diamond (NPD), nanotwinned diamond (NTD), micro-grained polycrystalline diamond (MPD), and amorphous diamond/carbon. In addition, we discuss the difference of spectra of XRD, Raman and EELS between various nanocrystalline diamond powder and ultrahard carbon materials. Finally, we provide our insights into the future development and applications in the research of ultrahard carbon bulk materials by high-pressure and high-temperature techniques according to the current advantages, limitations and challenges in the experiment.


Carbon; diamond; amorphous; spectra; properties; high pressure and high temperature (HPHT)


  • Miracle DB. A structural model for metallic glasses. Nature Mater. 2004;3(10):697–702.
  • Sheng HW, Luo WK, Alamgir FM, et al. Atomic packing and short-to-medium-range order in metallic ­glasses. Nature. 2006;439(7075):419–425.
  • Hirata A, Guan P, Fujita T, et al. Direct observation of local atomic order in a metallic glass. Nature Mater. 2011;10(1):28–33.
  • Tang H, Yuan X, Cheng Y, et al. Synthesis of paracrystalline diamond. Nature. 2021;599(7886):605–610.
  • Zhang S, Li Z, Luo K, et al. Discovery of carbon-based strongest and hardest amorphous material. Natl Sci Rev. 2022;9(1):nwab140.
  • Lin Y, Zhang L, Mao HK, et al. Amorphous diamond: a high-pressure superhard carbon allotrope. Phys Rev Lett. 2011;107(17):175504.
  • Zeng Z, Yang L, Zeng Q, et al. Synthesis of quenchable amorphous diamond. Nat Commun. 2017;8(1):322.
  • Sundqvist B. Carbon under pressure. Phys Rep. 2021;909:1–73.
  • Shang Y, Liu Z, Dong J, et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature. 2021;599(7886):599–604.
  • Robertson J. Diamond-like amorphous carbon. Mater Sci Engin: R: Reports. 2002;37(4-6):129–281.
  • Bundy FP, Hall HT, Strong HM, et al. Man-made diamonds. Nature. 1955;176(4471):51–55.
  • Bundy FP. Direct conversion of graphite to diamond in static pressure apparatus. J Chem Phys. 1963;38(3):631–643.
  • Bundy FP. Direct conversion of graphite to diamond in static pressure apparatus. Science. 1962;137(3535):1057–1058.
  • Naka S, Horii K, Takeda Y, et al. Direct conversion of graphite to diamond under static pressure. Nature. 1976;259(5538):38–39.
  • Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature. 2003;421(6923):599–600.
  • Sumiya H, Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J. Mater. Res. 2007;22(8):2345–2351.
  • Sumiya H, Irifune T, Kurio A, et al. Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. J Mater Sci. 2004;39(2):445–450.
  • Sumiya H, Irifune T. Indentation hardness of ­nano-polycrystalline diamond prepared from graphite by direct conversion. Diamond Relat Mater. 2004;13(10):1771–1776.
  • Sumiya H, Irifune T. Microstructure and mechanical properties of high-hardness nano-polycrystalline diamonds. SEI Technical Review-English Edition. 2008;66:85.
  • Harano K, Satoh T, Sumiya H, et al. Cutting performance of nano-polycrystalline diamond. SEI Tech Rev. 2010;71:98–103.
  • Sumiya H, Harano K. Distinctive mechanical properties of nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT. Diamond Relat Mater. 2012;24:44–48.
  • Irifune T, Kurio A, Sakamoto S, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Phys Earth Planet Inter. 2004;143–144:593–600.
  • Robertson J. Properties of diamond-like carbon. Surf Coat Technol. 1992;50(3):185–203.
  • Sumiya H, Toda N, Satoh S. Growth rate of high-quality large diamond crystals. J Cryst Growth. 2002;237–239:1281–1285.
  • Wang H, Zhang X, Wang Y, et al. Synthesizing bulk polycrystalline diamond by method of direct phase transition. Diamond Abrasives Engin. 2018;38(1):1–6.
  • Tang H, Wang M, He D, et al. Synthesis of nano-polycrystalline diamond in proximity to industrial conditions. Carbon. 2016;108:1–6.
  • Xu C, He D, Wang H, et al. Nano-polycrystalline diamond formation under ultra-high pressure. Int J Refract Met Hard Mater. 2013;36:232–237.
  • Wang WH, Dong C, Shek CH. Bulk metallic glasses. Mater Sci Engin: R: Reports. 2004;44(2–3):45–89.
  • Lewandowski JJ, Greer AL. Temperature rise at shear bands in metallic glasses. Nature Mater. 2006;5(1):15–18.
  • Taguchi M, Yano A, Tohoda S, et al. 24.7% Record efficiency HIT solar cell on thin silicon wafer. IEEE J Photovoltaics. 2014;4(1):96–99.
  • McMillan PF, Gryko J, Bull C, et al. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route. J Solid State Chem. 2005;178(3):937–949.
  • Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Stat Sol (b). 1966;15(2):627–637.
  • Bewilogua K, Hofmann D. History of diamond-like carbon films — from first experiments to worldwide applications. Surf Coat Technol. 2014;242:214–225.
  • Pu JC, Wang SF, Sung JC. High-temperature oxidation behaviors of CVD diamond films. Appl Surf Sci. 2009;256(3):668–673.
  • Mao WL, Mao H, Eng PJ, et al. Bonding changes in compressed superhard graphite. Science. 2003;302(5644):425–427.
  • Wang Z, Zhao Y, Tait K, et al. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proc Natl Acad Sci U S A. 2004;101(38):13699–13702.
  • Yoo CS, Nellis WJ. Phase transition from C60 molecules to strongly interacting C60 agglomerates at hydrostatic high pressures. Chem Phys Lett. 1992;198(3–4):379–382.
  • Blank VD, Buga SG, Dubitsky GA, et al. High-pressure polymerized phases of C60. Carbon. 1998;36(4):319–343.
  • Iwasa Y, Arima T, Fleming RM, et al. New phases of C60 synthesized at high pressure. Science. 1994;264(5165):1570–1572.
  • Blank VD, Buga SG, Serebryanaya NR, et al. Phase transformations in solid C60 at high-pressure-high-temperature treatment and the structure of 3D polymerized fullerites. Phys Lett A. 1996;220(1–3):149–157.
  • Hirai H, Kondo K, Yoshizawa N, et al. Amorphous diamond from C60 fullerene. Appl Phys Lett. 1994;64(14):1797–1799.
  • Hirai H, Terauchi M, Tanaka M, et al. Band gap of essentially fourfold-coordinated amorphous diamond synthesized from C60 fullerene. Phys Rev B. 1999;60(9):6357–6361.
  • Bundy FP, Bassett WA, Weathers MS, et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon. 1996;34(2):141–153.
  • Gioti M, Logothetidis S, Charitidis C. Stress relaxation and stability in thick amorphous carbon films deposited in layer structure. Appl Phys Lett. 1998;73(2):184–186.
  • Angus JC, Hayman CC. Low-pressure, metastable growth of diamond and “diamondlike” phases. Science. 1988;241(4868):913–921.
  • Liebermann RC. Multi-anvil, high pressure apparatus: a half-century of development and progress. High Pressure Res. 2011;31(4):493–532.
  • Kawai N, Endo S. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Rev Sci Instrum. 1970;41(8):1178–1181.
  • Kunimoto T, Irifune T. Pressure generation to 125 GPa using a 6-8-2 type multianvil apparatus with ­nano-polycrystalline diamond anvils. J Phys: Conf Ser. 2010;215:012190.
  • Dubrovinsky L, Dubrovinskaia N, Bykova E, et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature. 2015;525(7568):226–229.
  • Peng F, He D. Development of domestic hinge-type cubic presses based on high pressure scientific research. Chinese J High Pressure Phys. 2018;32(1):010105.
  • Zhang L, Wang Y, Lv J, et al. Materials discovery at high pressures. Nat Rev Mater. 2017;2(4):1–16.
  • Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature. 2014;510(7504):250–253.
  • Liu J, Zhan G, Wang Q, et al. Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure. Appl Phys Lett. 2018;112(6):061901.
  • Li Q, Zhan G, Li D, et al. Ultrastrong catalyst-free polycrystalline diamond. Sci Rep. 2020;10(1):1–10.
  • Zhang J, Zhan G, He D, et al. Transparent diamond ceramics from diamond powder. J Eur Ceram Soc. 2023;43(3):853–861.
  • Yip S. The strongest size. Nature. 1998;391(6667):532–533.
  • Pande CS, Cooper KP. Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog Mater Sci. 2009;54(6):689–706.
  • Naik SN, Walley SM. The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. J Mater Sci. 2020;55(7):2661–2681.
  • Dubrovinskaia N, Dubrovinsky L, Langenhorst F, et al. Nanocrystalline diamond synthesized from C60. Diamond Relat Mater. 2005;14(1):16–22.
  • Xu C, He D, Wang H, et al. Synthesis of nano-polycrystalline diamond under high pressure and high temperature. Superhard Mater Engin. 2011;23(4):9–12.
  • Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science. 2009;323(5914):607–610.
  • Solozhenko VL, Kurakevych OO, Le Godec Y. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv Mater. 2012;24(12):1540–1544.
  • Tian Y, Xu B, Yu D, et al. Ultrahard nanotwinned cubic boron nitride. Nature. 2013;493(7432):385–388.
  • Yue Y, Zhang Q, Yang Z, et al. Study of the mechanical behavior of radially grown fivefold twinned nanowires on the atomic scale. Small. 2016;12(26):3503–3509.
  • Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1(5):1–13.
  • Yue Y, Gao Y, Hu W, et al. Hierarchically structured diamond composite with exceptional toughness. Nature. 2020;582(7812):370–374.
  • Melinon P. Vitreous carbon, geometry and topology: a hollistic approach. Nanomaterials (Basel). 2021;11(7):1694.
  • Voyles PM, Zotov N, Nakhmanson SM, et al. Structure and physical properties of paracrystalline atomistic models of amorphous silicon. J Appl Phys. 2001;90(9):4437–4451.
  • Treacy MM, Borisenko KB. The local structure of amorphous silicon. Science. 2012;335(6071):950–953.
  • Patterson AL. The Scherrer formula for X-Ray particle size determination. Phys Rev. 1939;56(10):978–982.
  • Prawer S, Nugent KW, Jamieson DN, et al. The Raman spectrum of nanocrystalline diamond. Chem Phys Lett. 2000;332(1-2):93–97.
  • Feng ZC, Mascarenhas AJ, Choyke WJ, et al. Raman scattering studies of chemical‐vapor‐deposited cubic SiC films of (100) Si. J Appl Phys. 1988;64(6):3176–3186.
  • Amer M, Barsoum MW, El-Raghy T, et al. The Raman spectrum of Ti3SiC2. J Appl Phys. 1998;84(10):5817–5819.
  • Qian J, Pantea C, Voronin G, et al. Partial graphitization of diamond crystals under high-pressure and high-temperature conditions. J Appl Phys. 2001;90(3):1632–1637.
  • Lohse BH, Calka A, Wexler D. Raman spectroscopy as a tool to study TiC formation during controlled ball milling. J Appl Phys. 2005;97(11):114912.
  • Voronin G. Diamond–SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders. Diamond Relat Mater. 2003;12(9):1477–1481.
  • Ferrari AC, Robertson J. Origin of the1150-cm−1 Raman mode in nanocrystalline diamond. Phys Rev B. 2001;63(12):121405.
  • Pappas DL, Saenger KL, Bruley J, et al. Pulsed laser deposition of diamond‐like carbon films. J Appl Phys. 1992;71(11):5675–5684.
  • Fallon PJ, Veerasamy VS, Davis CA, et al. Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy. Phys Rev B. 1993;48(7):4777–4782.
  • Namba Y, Heidarpour E, Nakayama M. Size effects appearing in the Raman spectra of polycrystalline diamonds. J Appl Phys. 1992;72(5):1748–1751.
  • Irifune T, Isobe F, Shinmei T. A novel large-volume Kawai-type apparatus and its application to the synthesis of sintered bodies of nano-polycrystalline diamond. Phys Earth Planet Inter. 2014;228:255–261.
  • Chang YY, Jacobsen SD, Kimura M, et al. Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methods[J]. Phys Earth Planet Inter. 2014;228:47–55.
  • San-Miguel A. How to make macroscale non-crystalline diamonds. Nature 2021;599:563–564.