Skip to main content

Properties, mechanism and applications of diamond as an antibacterial material

Aude Cumont ,
Andrew R. Pitt ,
Peter A. Lambert ,
Marco R. Oggioni ,
Haitao Ye
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2020.1869434

Abstract

Antibiotic resistance in bacteria is a current threat causing an increasing number of infections of difficult clinical management. While the overuse and misuse of antibiotics are investigated to reduce them, the need for alternatives to approaches is rising. Carbon-based materials shown recent moderate to high antibacterial properties and diamond, thanks to its superior mechanical, tribological, electrical, chemical and biological quality is a choice material to investigate for safe antibacterial films, coatings and particles. Here, the antibacterial properties of diamond films, nanodiamonds, DLC films and a comprehensive list of the composites developed from them are discussed along with a summary of the bacterial strains used and the most efficient composition and/or concentration discovered. In a later stage, the mechanisms of action and the parameters that are believed to influence them are discussed and finally, an overview of the biomedical and food industry applications is given.

Keywords

antibacterial; diamond; properties; mechanism; surface functionalisation; antimicrobial

References

  • Hernando-Amado S, Coque TM, Baquero F, et al. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol. 2019; 4(9): 1432–1442.
  • Martínez JL, Coque TM, Baquero F. Prioritizing risks of antibiotic resistance genes in all metagenomes. Nat Rev Microbiol. 2015; 13(6): 396.
  • Knight GM, Davies NG, Colijn C, et al. Mathematical modelling for antibiotic resistance control policy: do we know enough?BMC Infect Dis. 2019; 19(1): 1011.
  • Stekel D. First report of antimicrobial resistance pre-dates penicillin. Nature. 2018; 562(7726): 192–192.
  • Berendonk TU, Manaia CM, Merlin C, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015; 13(5): 310–317.
  • Mainous AG, Everett CJ, Post RE, et al. Availability of antibiotics for purchase without a prescription on the internet. Ann Family Med. 2009; 7(5): 431–435.
  • Newton PN, Amin AA, Bird C, et al. The primacy of public health considerations in defining poor quality medicines. PLoS Med. 2011; 8(12): e1001139.
  • Hecker MT, Aron DC, Patel NP, et al. Unnecessary use of antimicrobials in hospitalized patients: current patterns of misuse with an emphasis on the antianaer­obic spectrum of activity. Arch Intern Med. 2003; 163(8): 972–978.
  • MacDougall C, Polk RE. Variability in rates of use of antibacterials among 130 US hospitals and risk-adjustment models for interhospital comparison. Infect Control Hosp Epidemiol. 2008; 29(3): 203–211.
  • Hassoun-Kheir N, Stabholz Y, Kreft J-U, et al. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: a systematic review. Sci Total Environ. 2020; 743: 140804.
  • Baker M, Hobman JL, Dodd CER, et al. Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate. FEMS Microbiol Ecol. 2016; 92(4): fiw040.
  • Graham JP, Boland JJ, Silbergeld E. Growth promoting antibiotics in food animal production: an economic analysis. Washington, D.C: Public Health Reports 2007: 122(1): 79–87.
  • Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. CMR. 2003; 16(2): 175–188.
  • Chattopadhyay MK. Use of antibiotics as feed additives: a burning question. Front Microbiol. 2014; 5(334).
  • Spellberg B, Bartlett JG, Gilbert DN. The future of antibiotics and resistance. N Engl J Med. 2013; 368(4): 299–302.
  • Busch G, Kassas B, Palma MA, et al. Perceptions of antibiotic use in livestock farming in Germany, Italy and the United States. Livestock Sci. 2020; 241: 104251.
  • Wang H, Ren L, Yu X, et al. Antibiotic residues in meat, milk and aquatic products in Shanghai and human exposure assessment. Food Control. 2017; 80: 217–225.
  • Gozdzielewska L, King C, Flowers P, et al. Scoping review of approaches for improving antimicrobial stewardship in livestock farmers and veterinarians. Prev Vet Med. 2020; 180: 105025.
  • Zhou M, Yu S, Hong B, et al. Antibiotics control in aquaculture requires more than antibiotic-free feeds: A tilapia farming case. Environ Pollut. 2021; 268: 115854.
  • Do NTT, Nadjm B, Nguyen KV, et al. Reducing antibiotic overuse in rural China. The Lancet Global Health. 2018; 6(4): e376.
  • Wei X, Zhang Z, Walley JD, et al. Effect of a training and educational intervention for physicians and caregivers on antibiotic prescribing for upper respiratory tract infections in children at primary care facilities in rural China: a cluster-randomised controlled trial. Lancet Global Health. 2017; 5(12): e1258–e1267.
  • Marco RO, et al. Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr Pharm Des. 2015; 21(16): 2054–2057.
  • Li Y, Zhen J, Tian Q, et al. One step synthesis of positively charged gold nanoclusters as effective antimicrobial nanoagents against multidrug-resistant bacteria and biofilms. J Colloid Interface Sci. 2020; 569: 235–243.
  • Mizdal CR, Stefanello ST, da Costa Flores V, et al. The antibacterial and anti-biofilm activity of gold-complexed sulfonamides against methicillin-resistant Staphylococcus aureus. Microbial Pathogenesis. 2018; 123: 440–448.
  • Baig U, Ansari MA, Gondal MA, et al. Single step production of high-purity copper oxide-titanium dioxide nanocomposites and their effective antibacterial and anti-biofilm activity against drug-resistant bacteria. Mat Sci Eng C. 2020; 113: 110992.
  • Manoharan RK, Mahalingam S, Gangadaran P, et al. Antibacterial and photocatalytic activities of 5-nitroindole capped bimetal nanoparticles against multidrug resistant bacteria. Colloids Surf, B. 2020; 188: 110825.
  • Mishra MP, Padhy RN. Antibacterial activity of green silver nanoparticles synthesized from Anogeissus acuminata against multidrug resistant urinary tract infecting bacteria in vitro and host-toxicity testing. J Appl Biomed. 2018; 16(2): 120–125.
  • Thanganadar Appapalam S, Paul B, Arockiasamy S, et al. Phytofabricated silver nanoparticles: Discovery of antibacterial targets against diabetic foot ulcer derived resistant bacterial isolates. Mat Sci Eng C. 2020; 117: 111256.
  • van Hengel IAJ, Putra NE, Tierolf MWAM, et al. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria. Acta Biomater. 2020; 107: 325–337.
  • Ahmed T, Shahid M, Noman M, et al. Bioprospecting a native silver-resistant Bacillus safensis strain for green synthesis and subsequent antibacterial and anticancer activities of silver nanoparticles. J Adv Res. 2020; 24: 475–483.
  • Cumont A, Zhang R, Corscadden L, et al. Characterisation and antibacterial investigation of a novel coating consisting of mushroom microstructures and HFCVD graphite. Mat Design. 2020; 189: 108498–108498.
  • Reddy IN, Reddy LV, Jayashree N, et al. Vanadium-doped graphitic carbon nitride for multifunctional applications: photoelectrochemical water splitting and antibacterial activities. Chemosphere. 2021; 264: 128593.
  • Dědková K, Janíková B, Matějová K, et al. ZnO/graphite composites and its antibacterial activity at different conditions. J Photochem Photobiol, B. 2015; 151: 256–263.
  • Dědková K, Lang J, Matějová K, et al. Nanostructured composite material graphite/TiO2 and its antibacterial activity under visible light irradiation. J Photochem Photobiol, B. 2015; 149: 265–271.
  • Narayanan KB, Park GT, Han SS. Antibacterial properties of starch-reduced graphene oxide–polyiodide nano­composite. Food Chem. 2020; 128385.
  • Li Y, Wang J, Yang Y, et al. A rose bengal/graphene oxide/PVA hybrid hydrogel with enhanced mechanical properties and light-triggered antibacterial activity for wound treatment. Mat Sci Eng C. 2021; 118: 111447.
  • Chen J, Zhao Q, Peng J, et al. Antibacterial and mechanical properties of reduced graphene-silver nanoparticle nanocomposite modified glass ionomer cements. J Dentistry. 2020; 96: 103332.
  • Noorunnisa Khanam P, Hasan A. Biosynthesis and characterization of graphene by using non-toxic reducing agent from Allium Cepa extract: anti-bacterial properties. Int J Biol Macromol. 2019; 126: 151–158.
  • Islam MS, Naz AN, Alam MN, et al. Electrospun poly(vinyl alcohol)/silver nanoparticle/carbon nanotube multi-composite nanofiber mat: fabrication, characterization and evaluation of thermal, mechanical and antibacterial properties. Colloid Interface Sci Commun. 2020; 35: 100247.
  • Sivaraj D, Vijayalakshmi K, Ganeshkumar A, et al. Tailoring Cu substituted hydroxyapatite/functionalized multiwalled carbon nanotube composite coating on 316L SS implant for enhanced corrosion resistance, antibacterial and bioactive properties. Int J Pharm. 2020; 590: 119946.
  • Sivaraj D, Vijayalakshmi K. Enhanced antibacterial and corrosion resistance properties of Ag substituted hydroxyapatite/functionalized multiwall carbon nanotube nanocomposite coating on 316L stainless steel for biomedical application. Ultrason Sonochem. 2019; 59: 104730–104730.
  • Bellingeri R, Mulko L, Molina M, et al. Nanocomposites based on pH-sensitive hydrogels and chitosan decorated carbon nanotubes with antibacterial properties. Mat Sci Eng C. 2018; 90: 461–467.
  • Joghataeian M, Bahari A, Qavami A, et al. An antibacterial study of a new magnetic carbon nanotube/core-shell nanohybrids. J Environ Chem Eng. 2020; 8(5): 104150.
  • Cui Y, Zhao Y, Tian Y, et al. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012; 33(7): 2327–2333.
  • Gopinath K, Kumaraguru S, Bhakyaraj K, et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microbial Pathogenesis. 2016; 101: 1–11.
  • Hernández-Sierra JF, Ruiz F, Cruz Pena DC, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed Nanotechnol Biol Med. 2008; 4(3): 237–240.
  • Hone DC, Haines AH, Russell DA. Rapid, quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles. Langmuir. 2003; 19(17): 7141–7144.
  • Hou W-C, Moghadam BY, Corredor C, et al. Distribution of functionalized gold nanoparticles between water and lipid bilayers as. Environ Sci Technol. 2012; 46(3): 1869–1876.
  • Hussain N, Gogoi A, Sarma RK, et al. Reduced graphene oxide nanosheets decorated with au nanoparticles as an effective bactericide: investigation of biocompatibility and leakage of sugars and proteins. ChemPlusChem. 2014; 79(12): n/a–1784.
  • Lin C-C, Yeh Y-C, Yang C-Y, et al. Selective binding of mannose-encapsulated gold nanoparticles to type 1 pili in Escherichia coli. J Am Chem Soc. 2002; 124(14): 3508–3509.
  • Pytlik N, Klemmed B, Machill S, et al. In vivo uptake of gold nanoparticles by the diatom Stephanopyxis turris. Algal Res. 2019; 39: 101447–101447.
  • Tiwari P, Vig K, Dennis V, et al. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials. 2011; 1(1): 31–63.
  • Wu S, Zuber F, Brugger J, et al. Antibacterial Au nanostructured surfaces. Nanoscale. 2016; 8(5): 2620–2625.
  • Zhou YR, Zeng JP. Attitude control for flexible satellite with input saturation and multi-uncertainties. J Xiamen Univ (Nat Sci). 2012; 51(1): 1–007.
  • Ajitha B, Reddy YAK, Jeon H-J, et al. Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: antimicrobial and catalytic activity. Adv Powder Technol. 2018; 29(1): 86–93.
  • Allahverdiyev AM, Abamor ES, Bagirova M, et al. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2011; 6(8): 933–940.
  • Besinis A, Peralta TD, Handy RD. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology. 2014; 8(1): 1–16.
  • Carbone M, Donia DT, Sabbatella G, et al. Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci. 2016; 28(4): 273–279.
  • Dehghani S, Peighambardoust SH, Peighambardoust SJ, et al. Improved mechanical and antibacterial properties of active LDPE films prepared with combination of Ag, ZnO and CuO nanoparticles. Food Pack Shelf Life. 2019; 22: 100391.
  • E K, K M, P B, E, et al. Biocompatible silver nanoparticles/poly(vinyl alcohol) electrospun nanofibers for potential antimicrobial food packaging applications. Food Pack Shelf Life. 2019; 21: 100379.
  • Egger S, Lehmann RP, Height MJ, et al. Antimicrobial properties of a novel silver-silica nanocomposite material. AEM. 2009; 75(9): 2973–2976.
  • Ema M, Okuda H, Gamo M, et al. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals. Reprod Toxicol. 2017; 67: 149–164.
  • Gliga AR, Skoglund S, Odnevall Wallinder I, et al. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014; 11(1): 11.
  • Guardiola FA, Logothetis P, Meseguer J, et al. Evaluation of silver nanospheres on viability and innate cellular parameters of gilthead seabream (Sparus aurata L.) head-kidney leucocytes. Fish Shellfish Immunol. 2017; 69: 99–107.
  • Hsiao I-L, Hsieh Y-K, Wang C-F, et al. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ Sci Technol. 2015; 49(6): 3813–3821.
  • Iavicoli I, Fontana L, Leso V, et al. The effects of nanomaterials as endocrine disruptors. IJMS. 2013; 14(8): 16732–16801.
  • Jha D, Thiruveedula PK, Pathak R, et al. Multifunctional biosynthesized silver nanoparticles exhibiting excellent antimicrobial potential against multi-drug resistant microbes along with remarkable anticancerous properties. Mat Sci Eng C. 2017; 80: 659–669.
  • Jung J, Raghavendra GM, Kim D, et al. One-step synthesis of starch-silver nanoparticle solution and its application to antibacterial paper coating. Int J Biol Macromol. 2018; 107: 2285–2290.
  • Kaur A, Preet S, Kumar V, et al. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Colloids Surf, B. 2019; 176: 62–69.
  • Kulshrestha S, Qayyum S, Khan AU. Antibiofilm efficacy of green synthesized graphene oxide-silver nanocomposite using Lagerstroemia speciosa floral extract: a comparative study on inhibition of gram-positive and gram-negative biofilms. Microbial Pathogenesis. 2017; 103: 167–177.
  • Lok C-N, Ho C-M, Chen R, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006; 5(4): 916–924.
  • Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010; 12(5): 1531–1551.
  • Marchiore NG, Manso IJ, Kaufmann KC, et al. Migration evaluation of silver nanoparticles from antimicrobial edible coating to sausages. LWT - Food Sci Technol. 2017; 76: 203–208.
  • Mie R, Samsudin MW, Din LB, et al. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomedicine. 2014; 9(1): 121–127.
  • Moghayedi M, Goharshadi EK, Ghazvini K, et al. Kinetics and mechanism of antibacterial activity and cytotoxicity of Ag-RGO nanocomposite. Colloids Surf, B. 2017; 159: 366–374.
  • Mohanty S, Mishra S, Jena P, et al. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed Nanotechnol Biol Med. 2012; 8(6): 916–924.
  • Morsi RE, Alsabagh AM, Nasr SA, et al. Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: antimicrobial characteristics. Int J Biol Macromol. 2017; 97: 264–269.
  • Nakkala JR, Mata R, Sadras SR. Green synthesized nano silver: synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity. J Colloid Interface Sci. 2017; 499: 33–45.
  • Nayak PS, Borah SM, Gogoi H, et al. Lactoferrin adsorption onto silver nanoparticle interface: Implications of corona on protein conformation, nanoparticle cytotoxicity and the formulation adjuvanticity. Chem Eng J. 2019; 361: 470–484.
  • Ocsoy I, Paret ML, Ocsoy MA, et al. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano. 2013; 7(10): 8972–8980.
  • Peighambardoust SJ, Peighambardoust SH, Pournasir N, et al. Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Pack Shelf Life. 2019; 22: 100420.
  • Qiao Z, Yao Y, Song S, et al. Silver nanoparticles with pH induced surface charge switchable properties for antibacterial and antibiofilm applications. J Mater Chem B. 2019; 7(5): 830–840.
  • Rajkumar T, Sapi A, Das G, et al. Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. J Photochem Photobiol, B. 2019; 193: 1–7.
  • Ruddaraju LK, Pallela PNVK, Pammi SVN, et al. Synergetic antibacterial and anticarcinogenic effects of Annona squamosa leaf extract mediated silver nano particles. Mater Sci Semicond Process. 2019; 100: 301–309.
  • Saravanakumar K, Hu X, Chelliah R, et al. Biogenic silver nanoparticles-polyvinylpyrrolidone based gly­cero­somes coating to expand the shelf life of fresh-cut bell pepper (Capsicum annuum L. var. grossum (L.) Sendt). Postharvest Biol Technol. 2020; 160: 111039.
  • Sayed AE-DH, Soliman HAM. Developmental toxicity and DNA damaging properties of silver nanoparticles in the catfish (Clarias gariepinus). Mutation Res/Genetic Toxicol Environ Mutagenesis. 2017; 822: 34–40.
  • Scherer MD, Sposito JCV, Falco WF, et al. Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: a close analysis of particle size dependence. Sci Total Environ. 2019; 660: 459–467.
  • Shaker MA, Shaaban MI. Synthesis of silver nanoparticles with antimicrobial and anti-adherence activities against multidrug-resistant isolates from Acinetobacter baumannii. J Taibah Univ Med Sci. 2017; 12(4): 291–297.
  • Siegel J, Polívková M, Staszek M, et al. Nanostructured silver coatings on polyimide and their antibacterial response. Mater Lett. 2015; 145: 87–90.
  • Singh RP, Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett. 2012; 213(2): 249–259.
  • Sintubin L, De Gusseme B, Van der Meeren P, et al. The antibacterial activity of biogenic silver and its mode of action. Appl Microbiol Biotechnol. 2011; 91(1): 153–162.
  • Song Z, Wu Y, Wang H, et al. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Mat Sci Eng C. 2019; 99: 255–263.
  • Vazquez-Muñoz R, Borrego B, Juárez-Moreno K, et al. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol Lett. 2017; 276: 11–20.
  • Verkhovskii R, Kozlova A, Atkin V, et al. Physical properties and cytotoxicity of silver nanoparticles under different polymeric stabilizers. Heliyon. 2019; 5(3): e01305.
  • Wang Z, Ou J, Wang Y, et al. Anti-bacterial superhydrophobic silver on diverse substrates based on the mussel-inspired polydopamine. Surf Coat Technol. 2015; 280: 378–383.
  • Wei Y, Chong YB, Du H, et al. Loose yarn of Ag-ZnO-PAN/ITO hybrid nanofibres: preparation, characterization and antibacterial evaluation. Mat Design. 2018; 139: 153–161.
  • Xiong R, Lu C, Zhang W, et al. Facile synthesis of tunable silver nanostructures for antibacterial application using cellulose nanocrystals. Carbohydr Polym. 2013; 95(1): 214–219.
  • Xue C-H, Chen J, Yin W, et al. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci. 2012; 258(7): 2468–2472.
  • Yang L, Chen L, Chen Y-C, et al. Homogeneously alloyed nanoparticles of immiscible Ag–Cu with ultrahigh antibacterial activity. Colloids Surf, B. 2019; 180: 466–472.
  • Yong C, Chen X, Xiang Q, et al. Recyclable magnetite-silver heterodimer nanocomposites with durable antibacterial performance. Bioact Mater. 2018; 3(1): 80–86.
  • Yu N, Cai T, Sun Y, et al. A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing. Int J Pharm. 2018; 552(1-2): 277–287.
  • Yun H, Kim JD, Choi HC, et al. Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against gram-negative and gram-positive bacteria. Bull Korean Chem Soc. 2013; 34(11): 3261–3264.
  • Zarei M, Jamnejad A, Khajehali E, et al. Microbiol. 2014; 7: 1.
  • Azam A, Ahmed AS, Oves M, et al. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomedicine. 2012; 7: 3527–3535.
  • Braymer JJ, Giedroc DP. Recent developments in copper and zinc homeostasis in bacterial pathogens. Curr Opin Chem Biol. 2014; 19: 59–66.
  • Chari N, Felix L, Davoodbasha MAli, et al. In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens. Biocatal Agric Biotechnol. 2017; 10: 336–341.
  • da Silva FS, Cinca N, Dosta S, et al. Corrosion resistance and antibacterial properties of copper coating deposited by cold gas spray. Surf Coat Technol. 2019; 361: 292–301.
  • Esteban-Cubillo A, Pecharromán C, Aguilar E, et al. Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci. 2006; 41(16): 5208–5212.
  • Gutiérrez MF, Malaquias P, Hass V, et al. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. J Dentistry. 2017; 61: 12–20.
  • Katwal R, Kaur H, Sharma G, et al. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J Ind Eng Chem. 2015; 31: 173–184.
  • Mahapatra O, Bhagat M, Gopalakrishnan C, et al. Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci. 2008; 3(3): 185–193.
  • Majumdar TD, Singh M, Thapa M, et al. Size-dependent antibacterial activity of copper nanoparticles against Xanthomonas oryzae pv. oryzae – a synthetic and mechanistic approach. Colloid Interface Sci Commun. 2019; 32: 100190.
  • Poole K. At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic activity and resistance. Trends Microbiol. 2017; 25(10): 820–832.
  • Solioz M, Abicht HK, Mermod M, et al. Response of gram-positive bacteria to copper stress. J Biol Inorg Chem. 2010; 15(1): 3–14.
  • Sonia S, Jayasudha R, Jayram ND, et al. Synthesis of hierarchical CuO nanostructures: Biocompatible antibacterial agents for Gram-positive and Gram-negative bacteria. Curr Appl Phys. 2016; 16(8): 914–921.
  • Usman MS, El Zowalaty ME, Shameli K, et al. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine. 2013; 8: 4467–4479.
  • Wang Z, Liang K, Chan S-W, et al. Fabrication of nano CuAl2O4 spinel for copper stabilization and antibacterial application. J Hazard Mater. 2019; 371: 550–557.
  • Yang J, Xu H, Zhang L, et al. Lasting superhydrophobicity and antibacterial activity of Cu nanoparticles immobilized on the surface of dopamine modified cotton fabrics. Surf Coat Technol. 2017; 309: 149–154.
  • Zeeshan M, Murugadas A, Ghaskadbi S, et al. ROS dependent copper toxicity in hydra-biochemical and molecular study. Comp Biochem Physiol C: Toxicol Pharmacol. 2016; 185-186: 1–12.
  • Zhang S, Wang Y, Song H, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. Environ Int. 2019; 129: 478–487.
  • Zong M, Bai L, Liu Y, et al. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays. Mat Sci Eng C. 2017; 71: 93–99.
  • Baek S, Joo SH, Su C, et al. Antibacterial effects of graphene- and carbon-nanotube-based nanohybrids on Escherichia coli: implications for treating multidrug-resistant bacteria. J Environ Manage. 2019; 247: 214–223.
  • Caoduro C, Hervouet E, Girard-Thernier C, et al. Carbon nanotubes as gene carriers: Focus on internalization pathways related to functionalization and properties. Acta Biomater. 2017; 49: 36–44.
  • Chen H, Wang B, Gao D, et al. Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small. 2013; 9(16): 2735–2746.
  • Chung H, Son Y, Yoon TK, et al. The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf. 2011; 74(4): 569–575.
  • Eldawud R, Wagner A, Dong C, et al. Carbon nanotubes physicochemical properties influence the overall cellular behavior and fate. NanoImpact. 2018; 9: 72–84.
  • Hirschfeld J, Akinoglu EM, Wirtz DC, et al. Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis. Nanomed Nanotechnol Biol Med. 2017; 13(4): 1587–1593.
  • Kang S, Herzberg M, Rodrigues DF, et al. Antibacterial effects of carbon nanotubes: size does matter. Langmuir. 2008; 24(13): 6409–6413.
  • Kang S, Pinault M, Pfefferle LD, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 2007; 23(17): 8670–8673.
  • Kassem A, Ayoub GM, Malaeb L. Antibacterial activity of chitosan nano-composites and carbon nanotubes: a review. Sci Total Environ. 2019; 668: 566–576.
  • Kostarelos K, Lacerda L, Pastorin G, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotech. 2007; 2(2): 108–113.
  • Li Z, de Barros ALB, Soares DCF, et al. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. Int J Pharm. 2017; 524(1-2): 41–54.
  • Liu S, Wei L, Hao L, et al. Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano. 2009; 3(12): 3891–3902.
  • Mao H, Kawazoe N, Chen G. Uptake and intracellular distribution of collagen-functionalized single-walled carbon nanotubes. Biomaterials. 2013; 34(10): 2472–2479.
  • Mazzaglia A, Scala A, Sortino G, et al. Intracellular trafficking and therapeutic outcome of multiwalled carbon nanotubes modified with cyclodextrins and polyethylenimine. Colloids Surf, B. 2018; 163: 55–63.
  • Murugesan B, Sonamuthu J, Samayanan S, et al. Highly biological active antibiofilm, anticancer and osteoblast adhesion efficacy from MWCNT/PPy/Pd nanocomposite. Appl Surf Sci. 2018; 434: 400–411.
  • Zhang M, Yang M, Morimoto T, et al. Size-dependent cell uptake of carbon nanotubes by macrophages: A comparative and quantitative study. Carbon. 2018; 127: 93–101.
  • Dillip GR, Banerjee AN, Sreekanth TVM, et al. In vitro cytotoxicity of in-situ synthesized zinc oxide anchored graphitic carbon nanofiber on HeLa cells. Mater Sci Semicond Process. 2017; 59: 87–92.
  • Jiang W-L, Ding Y-C, Haider MR, et al. A novel TiO2/graphite felt photoanode assisted electro-Fenton catalytic membrane process for sequential degradation of antibiotic florfenicol and elimination of its antibacterial activity. Chem Eng J. 2020; 391: 123503–123503.
  • Liu X, Lin Y, Xiang J, et al. Dual-doped(Si-Ag) graphite-like carbon coatings with ultra-low friction and high antibacterial activity prepared by magnetron sputtering deposition. Diamond Relat Mater. 2018; 86: 47–53.
  • Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010; 4(10): 5731–5736.
  • Akhavan O, Ghaderi E, Esfandiar A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B. 2011; 115(19): 6279–6288.
  • Barbolina I, Woods CR, Lozano N, et al. Purity of graphene oxide determines its antibacterial activity. 2D Mater. 2016; 3(2): 025025.
  • Hegab HM, ElMekawy A, Zou L, et al. The controversial antibacterial activity of graphene-based materials. Carbon. 2016; 105: 362–376.
  • Hu W, Peng C, Lv M, et al. Protein Corona-Mediated Mitigation of Cytotoxicity of Graphene Oxide. ACS Nano. 2011; 5(5): 3693–3700.
  • Ji H, Sun H, Qu X. Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv Drug Delivery Rev. 2016; 105: 176–189.
  • Li Q, Yong C, Cao W, et al. Fabrication of charge reversible graphene oxide-based nanocomposite with multiple antibacterial modes and magnetic recyclability. J Colloid Interface Sci. 2018; 511: 285–295.
  • Li R, Mansukhani ND, Guiney LM, et al. Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings. ACS Nano. 2016; 10(12): 10966–10980.
  • Liu S, Hu M, Zeng TH, et al. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir. 2012; 28(33): 12364–12372.
  • Ou L, Song B, Liang H, et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol. 2016; 13(1): 57.
  • Ouyang Y, Cai X, Shi Q, et al. Poly-l-lysine-modified reduced graphene oxide stabilizes the copper nanoparticles with higher water-solubility and long-term additively antibacterial activity. Colloids Surf, B. 2013; 107: 107–114.
  • Ruiz ON, Fernando KAS, Wang B, et al. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano. 2011; 5(10): 8100–8107.
  • Wang G, Qian F, Saltikov CW, et al. Microbial reduction of graphene oxide by Shewanella. Nano Res. 2011; 4(6): 563–570.
  • Alwani S, Hua QYun, Iftikhar S, et al. Lysine functionalized nanodiamonds as gene carriers - Investigation of internalization pathways and intracellular trafficking. Diamond Relat Mater. 2019; 98: 107477.
  • Ansari SA, Satar R, Jafri MA, et al. Role of nanodiamonds in drug delivery and stem cell therapy. Iran J Biotechnol. 2016; 14(3): 130–141.
  • Barras A, Martin FA, Bande O, et al. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. Nanoscale. 2013; 5(6): 2307–2316.
  • Beranová J, Seydlová G, Kozak H, et al. Antibacterial behavior of diamond nanoparticles against Escherichia coli. Phys Status Solidi B. 2012; 249(12): 2581–2584.
  • Dunseath O, Smith EJW, Al-Jeda T, et al. Studies of black diamond as an antibacterial surface for gram negative bacteria. Sci Rep. 2019; 9(1).
  • Eldawud R, Reitzig M, Opitz J, et al. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate. Nanotechnology. 2016; 27(8): 085107.
  • Fessele C, Wachtler S, Chandrasekaran V, et al. Thiourea-bridged nanodiamond glycoconjugates as inhibitors of bacterial adhesion. Eur J Org Chem. 2015; 2015(25): 5519–5525.
  • Fisher LE, Yang Y, Yuen M-F, et al. Bactericidal activity of biomimetic diamond nanocone surfaces. Biointerphases. 2016; 11(1): 011014.
  • Fresta CG, Chakraborty A, Wijesinghe MB, et al. Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Cell Death Dis. 2018; 9(2): 245.
  • Hartmann M, Betz P, Sun Y, et al. Saccharide-modified nanodiamond conjugates for the efficient detection and removal of pathogenic bacteria. Chem Eur J. 2012; 18(21): 6485–6492.
  • Hazell G, May PW, Taylor P, et al. Studies of black silicon and black diamond as materials for antibacterial surfaces. Biomater Sci. 2018; 6(6): 1424–1432.
  • Huang Y-A, Kao C-W, Liu K-K, et al. The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. Sci Rep. 2015; 4(1): 6919.
  • Ibrahim M, Xue Y, Ostermann M, et al. In vitro cytotoxicity assessment of nanodiamond particles and their osteogenic potential. J Biomed Mater Res. 2018; 106(6): 1697–1707.
  • Khanal M, Larsonneur F, Raks V, et al. Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles. Nanoscale. 2015; 7(6): 2325–2335.
  • Khanal M, Raks V, Issa R, et al. Selective antimicrobial and antibiofilm disrupting properties of functionalized diamond nanoparticles against Escherichia coli and Staphylococcus aureus. Part Part Syst Charact. 2015; 32(8): 822–830.
  • Lim DG, Kim KH, Kang E, et al. Comprehensive evaluation of carboxylated nanodiamond as a topical drug delivery system. Int J Nanomedicine. 2016; 11: 2381–2395.
  • Lin Y-C, Wu K-T, Lin Z-R, et al. Nanodiamond for biolabelling and toxicity evaluation in the zebrafish embryo in vivo. J Biophoton. 2016; 9(8): 827–836.
  • Nistor PA, May PW. Diamond thin films: giving biomedical applications a new shine. J R Soc Interface. 2017; 14(134): 20170382.
  • Shugalei I, Voznyakovskii AP, Garabadzhiu AV, et al. Biological activity of detonation nanodiamond and prospects in its medical and biological applications. Russ J General Chem. 2013; 83.
  • Szunerits S, Barras A, Boukherroub R. Antibacterial applications of nanodiamonds. IJERPH. 2016; 13(4): 413.
  • Vaijayanthimala V, Cheng P-Y, Yeh S-H, et al. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials. 2012; 33(31): 7794–7802.
  • Wehling J, Dringen R, Zare RN, et al. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano. 2014; 8(6): 6475–6483.
  • Weng M-F, Chang B-J, Chiang S-Y, et al. Cellular uptake and phototoxicity of surface-modified fluorescent nanodiamonds. Diamond Relat Mater. 2012; 22: 96–104.
  • Xing Y, Xiong W, Zhu L, et al. DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano. 2011; 5(3): 2376–2384.
  • Zhu Y, Li J, Li W, et al. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics. 2012; 2(3): 302–312.
  • Zheng Y, Ye H, Thornton R, et al. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing. Diamond Relat Mater. 2020; 101: 107600.
  • Quandt A, Popov I, Tománek D. Superior hardness and stiffness of diamond nanoparticles. Carbon. 2020; 162: 497–501.
  • Cicala G, Magaletti V, Senesi GS, et al. Superior hardness and Young’s modulus of low temperature nanocrystalline diamond coatings. Mater Chem Phys. 2014; 144(3): 505–511.
  • Cicala G, Magaletti V, Carbone G, et al. Load sensitive super-hardness of nanocrystalline diamond coatings. Diamond Relat Mater. 2020; 101: 107653.
  • Ren Z, Qin H, Dong Y, et al. A boron-doped diamond like carbon coating with high hardness and low friction coefficient. Wear. 2019; 436-437: 203031.
  • Liu Y, He D, Kou Z, et al. Hardness and thermal stability enhancement of polycrystalline diamond compact through additive hexagonal boron nitride. Scr Mater. 2018; 149: 1–5.
  • Pacella M. Laser finishing of polycrystalline diamond as strengthening mechanism. Procedia CIRP. 2020; 87: 240–244.
  • Xu H, Liu J-J, Ye H-T, et al. Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films. Chinese Phys B. 2018; 27(9): 096104.
  • Zheng Y, Ye H, Liu J, et al. Surface morphology evolution of a polycrystalline diamond by inductively coupled plasma reactive ion etching (ICP-RIE). Mater Lett. 2019; 253: 276–280.
  • Mindarava Y, Blinder R, Liu Y, et al. Synthesis and coherent properties of 13C-enriched sub-micron diamond particles with nitrogen vacancy color centers. Carbon. 2020; 165: 395–403.
  • Dong J, Jiang R, Huang H, et al. Facile preparation of fluorescent nanodiamond based polymer nanoparticles via ring-opening polymerization and their biological imaging. Mat Sci Eng C. 2020; 106: 110297.
  • Ye H, Sun CQ, Hing P. Control of grain size and size effect on the dielectric constant of diamond films. J Phys D: Appl Phys. 2000; 33(23): L148–L152.
  • Ye H, Sun CQ, Huang H, et al. Single semicircular response of dielectric properties of diamond films. Thin Solid Films. 2001; 381(1): 52–56.
  • Ye H, Williams OA, Jackman RB, et al. Electrical conduction in polycrystalline CVD diamond: temperature dependent impedance measurements. Phys Stat Sol (a)). 2002; 193(3): 462–469.
  • Curat S, Ye H, Gaudin O, et al. An impedance spectroscopic study of n-type phosphorus-doped diamond. J Appl Phys. 2005; 98(7): 073701.
  • Ye H, Kasu M, Ueda K, et al. Temperature dependent DC and RF performance of diamond MESFET. Diamond Relat Mater. 2006; 15(4-8): 787–791.
  • Ye H, Tumilty N, Bevilacqua M, et al. Electronic properties of homoepitaxial (111) highly boron-doped diamond films. J Appl Phys. 2008; 103(5): 054503.
  • Bevilacqua M, Patel S, Chaudhary A, et al. Electrical properties of aggregated detonation nanodiamonds. Appl Phys Lett. 2008; 93(13): 132115.
  • Bevilacqua M, Tumilty N, Mitra C, et al. Nanocrystalline diamond as an electronic material: An impedance spectroscopic and Hall effect measurement study. J Appl Phys. 2010; 107(3): 033716.
  • Su S, Li J, Kundrát V, et al. Hydrogen-terminated detonation nanodiamond: Impedance spectroscopy and thermal stability studies. J Appl Phys. 2013; 113(2): 023707.
  • Liao M, Liu J, Sang L, et al. Impedance analysis of Al2O3/H-terminated diamond metal-oxide-semiconductor structures. Appl Phys Lett. 2015; 106(8): 083506.
  • Xu H, Ye H, Coathup D, et al. An insight of p-type to n-type conductivity conversion in oxygen ion-implanted ultrananocrystalline diamond films by impedance spectroscopy. Appl Phys Lett. 2017; 110(3): 033102.
  • Wu K, Liao M, Sang L, et al. A density functional study of the effect of hydrogen on electronic properties and band discontinuity at anatase TiO2/diamond interface. J Appl Phys. 2018; 123(16): 161599.
  • Liu J, Yu H, Shao S, et al. Carrier mobility enhancement on the H-terminated diamond surface. Diamond Relat Mater. 2020; 104: 107750.
  • Zhao J, Liu J, Sang L, et al. Assembly of a high-dielectric constant thin TiOx layer directly on H-terminated semiconductor diamond. Appl Phys Lett. 2016; 108(1): 012105.
  • Zheng Y, Liu J, Zhang R, et al. Fast smoothing on diamond surface by inductively coupled plasma reactive ion etching. J Mater Res. 2020; 35(5): 462–472.
  • Sun CQ, Xie H, Zhang W, et al. Preferential oxidation of diamond {111}. J Phys D: Appl Phys. 2000; 33(17): 2196–2199.
  • Budil J, Matyska Lišková P, Artemenko A, et al. Anti-adhesive properties of nanocrystalline diamond films against Escherichia coli bacterium: Influence of surface termination and cultivation medium. Diamond Relat Mater. 2018; 83: 87–93.
  • May PW, Clegg M, Silva TA, et al. Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces. J Mater Chem B. 2016; 4(34): 5737–5746.
  • Medina O, Nocua J, Mendoza F, et al. Bactericide and bacterial anti-adhesive properties of the nanocrystalline diamond surface. Diamond Relat Mater. 2012; 22: 77–81.
  • Oh HG, Lee J-Y, Son HG, et al. Antibacterial mechanisms of nanocrystalline diamond film and graphene sheet. Results Phys. 2019; 12: 2129–2135.
  • Merker D, Popova B, Bergfeldt T, et al. Antimicrobial propensity of ultrananocrystalline diamond films with embedded silver nanodroplets. Diamond Relat Mater. 2019; 93: 168–178.
  • Iqbal T, Aziz A, Khan MA, et al. Surfactant assisted synthesis of ZnO nanostructures using atmospheric pressure microplasma electrochemical process with antibacterial applications. Materials Science and Engineering: B. 2018; 228: 153–159.
  • Díez-Pascual AM, Díez-Vicente AL. Antibacterial SnO2 nanorods as efficient fillers of poly(propylene fumarate-co-ethylene glycol) biomaterials. Mat Sci Eng C. 2017; 78: 806–816.
  • Ivanova EP, Hasan J, Webb HK, et al. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small. 2012; 8(16): 2489–2494.
  • Tripathy A, Sen P, Su B, et al. Natural and bioinspired nanostructured bactericidal surfaces. Adv Colloid Interface Sci. 2017; 248: 85–104.
  • Hasan J, Jain S, Padmarajan R, et al. Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria. Materials & Design. 2018; 140: 332–344.
  • Turcheniuk V, Raks V, Issa R, et al. Antimicrobial activity of menthol modified nanodiamond particles. Diamond Relat Mater. 2015; 57: 2–8.
  • Gutiérrez B,JM, et al. High antibacterial properties of DLC film doped with nanodiamond. Surf Coat Technol. 2019; 375: 395–401.
  • Chwalibog A, Sawosz E, Hotowy A, et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine. 2010; 5: 1085–1094.
  • Xu T, Wu L, Yu Y, et al. Synthesis and characterization of diamond–silver composite with anti-bacterial property. Mater Lett. 2014; 114: 92–95.
  • Panáček A, Kvítek L, Smékalová M, et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotech. 2018; 13(1): 65–71.
  • Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hospital Infect. 2005; 60(1): 1–7.
  • Muller M. Bacterial silver resistance gained by cooperative interspecies redox behavior. Antimicrob Agents Chemother. 2018; 62(8): e00672–18.
  • Salas-Orozco M, Niño-Martínez N, Martínez-Castañón G-A, et al. Mechanisms of resistance to silver nanoparticles in endodontic bacteria: a literature review. J Nanomater. 2019; 2019: 1–11.
  • Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003; 27(2-3): 341–353.
  • Sütterlin S. Aspects of bacterial resistance to silver, in digital comprehensive summaries of Uppsala Dissertations from the Faculty of Medicine. 2015. Acta Universitatis Upsaliensis: Uppsala. p. 64.
  • Lansdown A, Williams A. Bacterial resistance to silver-based antibiotics. Nurs Times. 2007; 103(9): 48–49.
  • Dissemond J, Steinmann J, Münter K-C, et al. Risk and clinical impact of bacterial resistance/susceptibility to silver-based wound dressings: a systematic review. J Wound Care. 2020; 29(4): 221–234.
  • Sütterlin S, Dahlö M, Tellgren-Roth C, et al. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species. J Hospital Infect. 2017; 96(3): 256–261.
  • Holland SL, Dyer PS, Bond CJ, et al. Candida argentea sp. nov., a copper and silver resistant yeast species. Fungal Biol. 2011; 115(9): 909–918.
  • Wu X-l, Qiu G-z, Gao J, et al. Mutagenic breeding of silver-resistant Acidithiobacillus ferrooxidans and exploration of resistant mechanism. Trans Nonferrous Metals Soci China. 2007; 17(2): 412–417.
  • Woods EJ, Cochrane CA, Percival SL. Prevalence of silver resistance genes in bacteria isolated from human and horse wounds. Vet Microbiol. 2009; 138(3-4): 325–329.
  • Zhang M, Chen L, Ye C, et al. Co-selection of antibiotic resistance via copper shock loading on bacteria from a drinking water bio-filter. Environ Pollut. 2018; 233: 132–141.
  • Lin H, Wang C, Zhao H, et al. A subcellular level study of copper speciation reveals the synergistic mechanism of microbial cells and EPS involved in copper binding in bacterial biofilms. Environ Pollut. 2020; 263: 114485.
  • Qiao K, Liu Q, Huang Y, et al. Management of bacterial spot of tomato caused by copper-resistant Xanthomonas perforans using a small molecule compound carvacrol. Crop Prot. 2020; 132: 105114.
  • Roach R, Mann R, Gambley CG, et al. Pathogenicity and copper tolerance in Australian Xanthomonas species associated with bacterial leaf spot. Crop Prot. 2020; 127: 104923.
  • Rodríguez-Montelongo L, Volentini SI, Farías RN, et al. The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Arch Biochem Biophys. 2006; 451(1): 1–7.
  • Echeverría-Vega A, Demergasso C. Copper resistance, motility and the mineral dissolution behavior were assessed as novel factors involved in bacterial adhesion in bioleaching. Hydrometallurgy. 2015; 157: 107–115.
  • Tuo X, Gu J, Wang X, et al. Prevalence of quinolone resistance genes, copper resistance genes, and the bacterial communities in a soil-ryegrass system co-polluted with copper and ciprofloxacin. Chemosphere. 2018; 197: 643–650.
  • Esp�Rito Santo C, Morais PV, Grass G. Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl Environ Microbiol. 2010; 76(5): 1341–1348.
  • Staehlin BM, Gibbons JG, Rokas A, et al. Evolution of a heavy metal homeostasis/resistance island reflects increasing copper stress in Enterobacteria. Genome Biol Evol. 2016; 8(3): 811–826.
  • Chen J, Li J, Zhang H, et al. Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in Northern China. Front Microbiol. 2019; 10(1916)
  • Yin Y, Gu J, Wang X, et al. Effects of copper addition on copper resistance, antibiotic resistance genes, and Intl1 during swine manure composting. Front Microbiol. 2017; 8(344)
  • Altimira F, Yáñez C, Bravo G, et al. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of Central Chile. BMC Microbiol. 2012; 12(1): 193–193.
  • Hobman JL, Crossman LC. Bacterial antimicrobial metal ion resistance. J Med Microbiol. 2015; 64(5): 471–497.
  • Zhang R, Gu J, Wang X, et al. Antibiotic resistance gene transfer during anaerobic digestion with added copper: important roles of mobile genetic elements. Sci Total Environ. 2020; 743: 140759.
  • Marciano FR, Bonetti LF, Da-Silva NS, et al. Diamond-like carbon films produced from high deposition rates exhibit antibacterial activity. Synth Met. 2009; 159(21-22): 2167–2169.
  • Geyao L, Yang D, Wanglin C, et al. Development and application of physical vapor deposited coatings for medical devices: a review. Procedia CIRP. 2020; 89: 250–262.
  • Marciano FR, Bonetti LF, Mangolin JF, et al. Investigation into the antibacterial property and bacterial adhesion of diamond-like carbon films. Vacuum. 2011; 85(6): 662–666.
  • Wang LJ, Zhang F, Fong A, et al. Effects of silver segregation on sputter deposited antibacterial silver-containing diamond-like carbon films. Thin Solid Films. 2018; 650: 58–64.
  • Robertson SN, Gibson D, MacKay WG, et al. Investigation of the antimicrobial properties of modified multilayer diamond-like carbon coatings on 316 stainless steel. Surf Coat Technol. 2017; 314: 72–78.
  • Baba K, Hatada R, Flege S, et al. Preparation and antibacterial properties of Ag-containing diamond-like carbon films prepared by a combination of magnetron sputtering and plasma source ion implantation. Vacuum. 2013; 89: 179–184.
  • Juknius T, Ružauskas M, Tamulevičius T, et al. Antimicrobial properties of diamond-like carbon/silver nanocomposite thin films deposited on textiles: towards smart bandages. Materials (Basel, Switzerland). 2016; 9(5): 371.
  • Lan W-C, Ou S-F, Lin M-H, et al. Development of silver-containing diamond-like carbon for biomedical applications. Part I: microstructure characteristics, mechanical properties and antibacterial mechanisms. Ceram Int. 2013; 39(4): 4099–4104.
  • Zakarienė G, Novoslavskij A, Meškinis Š, et al. Diamond like carbon Ag nanocomposites as a control measure against Campylobacter jejuni and Listeria monocytogenes on food preparation surfaces. Diamond Relat Mater. 2018; 81: 118–126.
  • Juknius T, Juknienė I, Tamulevičius T, et al. Preclinical study of a multi-layered antimicrobial patch based on thin nanocomposite amorphous diamond like carbon films with embedded silver nanoparticles. Materials. 2020; 13(14): 3180.
  • Harrasser N, Jüssen S, Obermeir A, et al. Antibacterial potency of different deposition methods of silver and copper containing diamond-like carbon coated polyethylene. Biomater Res. 2016; 20(1): 17.
  • Harrasser N, Jüssen S, Banke IJ, et al. Antibacterial efficacy of titanium-containing alloy with silver-nanoparticles enriched diamond-like carbon coatings. AMB Expr. 2015; 5(1): 77.
  • Schwarz FP, Hauser-Gerspach I, Waltimo T, et al. Antibacterial properties of silver containing diamond like carbon coatings produced by ion induced polymer densification. Surf Coat Technol. 2011; 205(20): 4850–4854.
  • Mazare A, Anghel A, Surdu-Bob C, et al. Silver doped diamond-like carbon antibacterial and corrosion resistance coatings on titanium. Thin Solid Films. 2018; 657: 16–23.
  • Khamseh S, Alibakhshi E, Mahdavian M, et al. Magnetron-sputtered copper/diamond-like carbon composite thin films with super anti-corrosion properties. Surf Coat Technol. 2018; 333: 148–157.
  • Lee F-P, Wang D-J, Chen L-K, et al. Antibacterial nanostructured composite films for biomedical applications: microstructural characteristics, biocompatibility, and antibacterial mechanisms. Biofouling. 2013; 29(3): 295–305.
  • Milan PB, Khamseh S, Zarrintaj P, et al. Copper-enriched diamond-like carbon coatings promote regeneration at the bone–implant interface. Heliyon. 2020; 6(4): e03798.
  • Chan Y-H, Huang C-F, Ou K-L, et al. Mechanical properties and antibacterial activity of copper doped diamond-like carbon films. Surf Coat Technol. 2011; 206(6): 1037–1040.
  • Ren DW, Zhao Q, Bendavid A. Anti-bacterial property of Si and F doped diamond-like carbon coatings. Surf Coat Technol. 2013; 226: 1–6.
  • Hosseini SI, Javaherian Z, Minai-Tehrani D, et al. Antibacterial properties of fluorinated diamond-like carbon films deposited by direct and remote plasma. Mater Lett. 2017; 188: 84–87.
  • Marciano FR, Lima-Oliveira DA, Da-Silva NS, et al. Antibacterial activity of fluorinated diamond-like carbon films produced by PECVD. Surf Coat Technol. 2010; 204(18-19): 2986–2990.
  • Onodera S, Fujii S, Moriguchi H, et al. Antibacterial property of F doped DLC film with plasma treatment. Diamond Relat Mater. 2020; 107: 107835.
  • Yonezawa K, Kawaguchi M, Kaneuji A, et al. Evaluation of antibacterial and cytotoxic properties of a fluorinated diamond-like carbon coating for the development of antibacterial medical implants. Antibiotics. 2020; 9(8): 495.
  • Buchegger S, Kamenac A, Fuchs S, et al. Smart antimicrobial efficacy employing pH-sensitive ZnO-doped diamond-like carbon coatings. Sci Rep. 2019; 9(1): 17246.
  • Wu A, Wang D, Wei C, et al. A comparative photocatalytic study of TiO2 loaded on three natural clays with different morphologies. Appl Clay Sci. 2019; 183: 105352.
  • Krishnan B, Mahalingam S. Ag/TiO2/bentonite nanocomposite for biological applications: Synthesis, characterization, antibacterial and cytotoxic investigations. Adv Powder Technol. 2017; 28(9): 2265–2280.
  • Mishra A, Mehta A, Basu S. Clay supported TiO2 nanoparticles for photocatalytic degradation of environmental pollutants: A review. J Environ Chem Eng. 2018; 6(5): 6088–6107.
  • Xu W, Xie W, Huang X, et al. The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research. Food Chem. 2017; 221: 267–277.
  • Olad A, Nosrati R, Najjari H, et al. Preparation and investigation of hydrophilic, photocatalytic, and antibacterial polyacrylic latex coating containing nanostructured TiO2/Ag+-exchanged-montmorillonite composite material. Appl Clay Sci. 2016; 123: 156–165.
  • Lin D, Yang Y, Wang J, et al. Preparation and characterization of TiO2-Ag loaded fish gelatin-chitosan antibacterial composite film for food packaging. Int J Biol Macromol. 2020; 154: 123–133.
  • Soltaninejad V, Maleki A. A green, and eco-friendly bionanocomposite film (poly(vinyl alcohol)/TiO2/chitosan/chlorophyll) by photocatalytic ability, and antibacterial activity under visible-light irradiation. J Photochem Photobiol, A. 2021; 404: 112906.
  • Mallakpour S, Ramezanzade V. Green fabrication of chitosan/tragacanth gum bionanocomposite films having TiO2@Ag hybrid for bioactivity and antibacterial applications. Int J Biol Macromol. 2020; 162: 512–522.
  • Dai F, Huang J, Liao W, et al. Chitosan-TiO2 microparticles LBL immobilized nanofibrous mats via electrospraying for antibacterial applications. Int J Biol Macromol. 2019; 135: 233–239.
  • Marciano FR, Lima-Oliveira DA, Da-Silva NS, et al. Antibacterial activity of DLC films containing TiO2 nanoparticles. J Colloid Interface Sci. 2009; 340(1): 87–92.
  • Wang T, Huang L, Liu Y, et al. Robust biomimetic hierarchical diamond architecture with a self-cleaning, antibacterial, and antibiofouling surface. ACS Appl Mater Interfaces. 2020; 12(21): 24432–24441.
  • Chatterjee A, Perevedentseva E, Jani M, et al. Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli. J Biomed Opt. 2014; 20(5): 051014.
  • Lopes FS, Oliveira JR, Milani J, et al. Biomineralized diamond-like carbon films with incorporated titanium dioxide nanoparticles improved bioactivity properties and reduced biofilm formation. Mat Sci Eng C. 2017; 81: 373–379.
  • Tang CJ, Abe I, Fernandes AJS, et al. A new regime for high rate growth of nanocrystalline diamond films using high power and CH4/H2/N2/O2 plasma. Diamond Relat Mater. 2011; 20(3): 304–309.
  • Tang CJ, Fernandes AJS, Granada M, et al. High rate growth of nanocrystalline diamond films using high microwave power and pure nitrogen/methane/hydrogen plasma. Vacuum. 2015; 122: 342–346.
  • Zimmerli W, Ochsner PE. Management of Infection Associated with Prosthetic Joints. Infection. 2003; 31(2): 99–108.
  • Kurtz SM, Lau E, Schmier J, et al. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty. 2008; 23(7): 984–991.
  • Srivastava AK, Dwivedi N, Dhand C, et al. Potential of graphene-based materials to combat COVID-19: properties, perspectives and prospects. Mater Today Chem. 2020; 18: 100385.
  • Wang F, Gopinath SC, Lakshmipriya T. Aptamer-antibody complementation on multiwalled carbon nanotube-gold transduced dielectrode surfaces to detect pandemic swine Influenza Virus. IJN. 2019; 14: 8469–8481.
  • Nidzworski D, Siuzdak K, Niedziałkowski P, et al. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci Rep. 2017; 7(1): 15707.
  • Matsubara T, Ujie M, Yamamoto T, et al. Avian Influenza Virus Detection by Optimized Peptide Termination on a Boron-Doped Diamond Electrode. ACS Sens. 2020; 5(2): 431–439.