Skip to main content

Journal Published by Taylor & Francis Group

Latest articles

The polishing methods for large area CVD diamond wafer

Haochen Zhang,
Zengyu Yan,
Zhipeng Song,
Shuai Zhou,
Zilong Zhang,
Guo Chen,
Meiyong Liao,
Guangchao Chen
AbstractThe mainstream polishing methods were reviewed in light of polycrystalline CVD diamond wafer with large area. The principles, equipment, and processes of the mainstream polishing methods were reviewed, and the processing characteristics of these methods were compared. The material removal rate (MRR), polishing rate (PR), and minimum surface roughness (Ra) obtained by each polishing method were summed up. The non-contact method has a relatively higher MRR than the contact method, while the contact method has a relatively smaller final roughness than the non-contact method. Two factors, K (K = ΔRa/Δm, ΔRa is the reduction of the surface roughness, Δm is the mass loss) and CI (CI = K/t, t is the total polishing time), were proposed to evaluate the influence of the polishing parameters on the polishing course in the contact polishing methods and to describe the feature of each polishing method, respectively. The variation of the K value indicated that the polishing load and the polishing plate speed did not always influence the polishing effect monotonically in every contact polishing method, and it should be optimized to obtain fine surface roughness with the tiny mass loss. The CI value showed that the non-contact polishing method possessed the feature of high roughness improvement with low mass loss in the unit polishing time. These results reveal how to move forward on the path to polishing large area polycrystalline CVD diamond wafer.
CVD diamond;
polycrystalline wafer;
surface roughness;
mass loss
Functional Diamond
Volume 3, Issue 1 (2023)

Research progress on electrochemical property and surface modifications of nanodiamond powders

Liang Dong,
Guohao Zhu,
Jianbing Zang,
Yanhui Wang
AbstractNanodiamond (ND) has strong chemical stability, the initial oxidation temperature of ND is above 500 °C. A variety of oxygen-containing functional groups are adsorbed on the surface of ND, which makes ND has certain conductivity. Then ND can be used as highly stable catalyst or ideal support material. This paper reviews the properties, functionalization and electrochemical applications of ND. In this review, the catalytic activity and stability of diamond-based catalysts can be further improved by appropriately functionalizing ND, and the research progress in the field of electrochemistry can be increased.
surface modification;
electrochemical application
Functional Diamond
Volume 3, Issue 1 (2023)

High temperature stability of H-diamond high frequency MOSFET with 300°C grown Al2O3 dielectric

Ma Yuanchen,
Ren Zeyang,
Yang Shiqi,
Su Kai,
Zhang Jinfeng,
Yang Xiaoli,
Ning Xiuxiu,
Zhang Jincheng,
Hao Yue

The high frequency H-diamond metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated on single diamond substrate using 300°C ALD grown Al2O3 as gate dielectric and passivation layer. The devices gate length, gate/drain spacing and dielectric thickness are 100 nm, 2 μm, and 10 nm, respectively. The direct-current and frequency characteristics were investigated. The device shows a maximum saturation drain current of −492.6 mA/mm and gm of 135.2 mS/mm. The device shows good high temperature working performance, and the maximum saturation drain current only has a little decreasing of 7.6%. at 200°C. In addition, the device exhibits a maximum cut-off frequency of 36.2 GHz and maximum oscillation frequency of 70.5 GHz. The transient drain current response measurement indicates that the drain current can follow the changing of gate voltage at the frequency of 1 MHz. These results indicate that the Al2O3 dielectric is suitable for using in high frequency or the high-speed switching devices.

high frequency
Functional Diamond
Volume 3, Issue 1 (2023)

Effect of defects on Q factors of single-crystal diamond MEMS resonators

Zilong Zhang,
Guo Chen,
Keyun Gu,
Satoshi Koizumi,
Meiyong Liao

A resonator with a high Q factor is generally pursued in the single-crystal diamond (SCD) microelectromechanical system (MEMS) for high-performance sensors. In this report, we investigate the oxygen etching effect of SCD on the Q factors of the SCD resonators by using the Raman spectroscopy spatial mapping. We aim to establish the etch pit effect on the Q factors of the SCD MEMS resonators. The 2D Raman imaging technique discloses the dislocations and the local stress in the SCD MEMS resonators in microscale. It is observed that the full width half maximum (FWHM) of the Raman spectra of the SCD resonators has marked relationship with the Q factors of the SCD resonators. The etch pits resulted from the dislocations have weak influence on the Q factors of the SCD resonators.

Single-crystal diamond;
MEMS resonator;
Q factor;
Functional Diamond
Volume 3, Issue 1 (2023)

Tailoring optical emission of silicon-vacancy centers in two-dimensional diamond nanosheets via a two-step oxidation approach

Bing Yang,
Biao Yu,
Jiaqi Lu,
Haining Li,
Zhaofeng Zhai,
Xiaokun Guo,
Nan Huang,
Lusheng Liu,
Xin Jiang
Incorporating two-dimensional (2D) diamond nanosheets with fluorescent color centers exhibits great potential in the application of quantum sensing. However, color centers always show poor optical emission in chemical-vapor-deposited (CVD) diamond nanomaterials. To address this issue, Si doped diamond/graphite hybrid films were successfully fabricated in microwave-plasma CVD device. The films consist of diamond-core/graphite-shell nanosheets with high amount of diamond nanocrystalline particles. Two post treatments of acid oxidation and annealing in air were used to tailor photoluminescence (PL) of silicon-vacancy (SiV) centers. The SiV centers in the oxidized samples exhibit small PL increase compared with the as-deposited samples with SiV PL quenching. It is found that the graphite phase is selectively etched away with the presence of nanocrystalline diamond particles during the treatment of acid oxidation while the nanocrystalline diamond particles are efficiently removed with the presence of graphite using the air annealing method. Based on this result, a two-step approach of acid oxidation followed by air annealing was conducted to etch the non-diamond phase, forming diamond nanosheets. The SiV centers exhibit significant PL enhancement with a maximum value of 28 folds, compared with the single-step oxidized samples. The Raman and XPS results reveal that such PL increase originates from direct bonding of oxygen on the carbon. Therefore, our work provides a feasible approach to prepare 2D diamond nanosheets with high-brightness color centers.
Color center;
two-dimensional materials
Functional Diamond
Volume 3, Issue 1 (2023)

Friendly links