Skip to main content
Research Article

Fabrication of low thermal resistance 3C-SiC/diamond structure for GaN epitaxial layer growth

Ryo Kagawa ,
Yutaka Ohno ,
Yasuyoshi Nagai ,
Naoteru Shigekawa ,
Jianbo Liang
Volume 4, Issue 1 (2024)
DOI: 10.1080/26941112.2024.2337352

Keywords

3C-SiC/diamond interface; 3C-SiC; thermal boundary conductance; GaN-on-diamond structure; thermal; management; surface-activated bonding

References

  • Liu T, Kong Y, Wu L, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology. IEEE Electron Device Lett. 2017;38(10):1–12.  Google Scholar
  • Hirama K, Taniyasu Y, Kasu M. Electroluminescence and capacitance-voltage characteristics of single-crystal n-type AlN (0001)/p-type diamond (111) heterojunction diodes. Appl Phys Lett. 2011;98:011908-1–3.  Google Scholar
  • Zhou Y, Ramaneti R, Anaya J, et al. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs. Appl Phys Lett. 2017;111:041901-1–5.  Web of Science ®Google Scholar
  • Kuzmik J, Bychikhin S, Pogany D, et al. Thermal characterization of MBE-grown GaN/AlGaN/GaN device on single crystalline diamond. J Appl Phys. 2011;109:107–110.  Google Scholar
  • Mandal S, Yuan C, Massabuau F, et al. Thick, adherent diamond films on AlN with low thermal barrier resistance. ACS Appl Mater Interf. 2019;11(43):40826–40834.  PubMed Web of Science ®Google Scholar
  • Siddique A, Ahmed R, Anderson J, et al. Structure and interface analysis of diamond on an AlGaN/GaN HEMT utilizing an in situ SiN x interlayer grown by MOCVD. ACS Appl Electron Mater. 2019;1(8):1387–1399.  Google Scholar
  • Wang K, Ruan K, Hu W, et al. Room temperature bonding of GaN on diamond wafers by using Mo/Au nano-layer for high-power semiconductor devices. Scr Mater. 2020;174:87–90.  Web of Science ®Google Scholar
  • Mu F, He R, Suga T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices. Scr Mater. 2018;150:148–151.  Web of Science ®Google Scholar
  • Kobayashi A, Tomiyama H, Ohno Y, et al. Room-temperature bonding of GaN and diamond via a SiC layer. Functional Diamond. 2022;2(1):142–150.  Google Scholar
  • Francis D, Faili F, Babić D, et al. Formation and characterization of 4-inch GaN-on-diamond substrates. Diam Relat Mater. 2010;19(2–3):229–233.  Web of Science ®Google Scholar
  • Cho J, Francis D, Altman DH, et al. Phonon conduction in GaN-diamond composite substrates. J Appl Phys. 2017;121:055105-1–9.  Web of Science ®Google Scholar
  • Käding OW, Rösler M, Zachai R, et al. Lateral thermal diffusivity of epitaxial diamond films. Diam Relat Mater. 1994;3(9):1178–1182.  Web of Science ®Google Scholar
  • Sun H, Simon RB, Pomeroy JW, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl Phys Lett. 2015;106(11):0–4.  Google Scholar
  • Malakoutian M, Field DE, Hines NJ, et al. Record-low thermal boundary resistance between diamond and GaN-on-SiC for enabling radiofrequency device cooling. ACS Appl Mater Interf. 2021;13(50):60553–60560.  PubMedGoogle Scholar
  • Yates L, Anderson J, Gu X, et al. Low thermal boundary resistance interfaces for GaN-on-diamond devices. ACS Appl Mater Interf. 2018;10(28):24302–24309.  PubMed Web of Science ®Google Scholar
  • Angadi MA, Watanabe T, Bodapati A, et al. Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. J Appl Phys. 2006;99:114301-1–6.  Web of Science ®Google Scholar
  • Chao PC, Chu K, Creamer C, et al. Low-temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz. IEEE Trans Electron Dev. 2015;62(11):3658–3664.  Web of Science ®Google Scholar
  • Minoura Y, Ohki T, Okamoto N, et al. Surface activated bonding of SiC/diamond for thermal management of high-output power GaN HEMTs. Jpn J Appl Phys. 2020;59(SG):SGGD03.  Google Scholar
  • Nakatsuka O, Kitada H, Kim Y, et al. Characterization of local strain around through-silicon via interconnects by using X-ray microdiffraction. Jpn J Appl Phys. 2011;50(5S1):05ED03.  Google Scholar
  • Lin ME, Ma Z, Huang FY, et al. Low resistance ohmic contacts on wide band-gap GaN. Appl Phys Lett. 1994;64(8):1003–1005.  Google Scholar
  • Wang DF, Shiwei F, Lu C, et al. Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN. J Appl Phys. 2001;89(11):6214–6217.  Google Scholar
  • Gibart P. Metal organic vapour phase epitaxy of GaN and lateral overgrowth. Rep Prog Phys. 2004;67(5):667–715.  Google Scholar
  • Ahn SH, Lee SH, Nahm KS, et al. Catalytic growth of high quality GaN micro-crystals. J Cryst Growth. 2002;234:70–76.  Google Scholar
  • Kagawa R, Kawamura K, Sakaida Y, et al. AlGaN/GaN/3C-SiC on diamond HEMTs with thick nitride layers prepared by bonding-first process. Appl Phys Express. 2022;15(4):041003.  Google Scholar
  • Kagawa R, Cheng Z, Kawamura K, et al. High thermal stability and low thermal resistance of large area GaN/3C-SiC/diamond junctions for practical device processes. Small. 2023;20(13):2305574-1–14.  Google Scholar
  • Moutanabbir O, Gösele U. Heterogeneous integration of compound semiconductors. Annu Rev Mater Res. 2010;40(1):469–500.  Google Scholar
  • Cheng Z, Liang J, Kawamura K, et al. High thermal conductivity in wafer-scale cubic silicon carbide crystals. Nat Commun. 2022;13:7201-1–9.  PubMedGoogle Scholar
  • Hirama K, Taniyasu Y, Kasu M. AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy. Appl Phys Lett. 2011;98:1–4.  Google Scholar
  • Komiyama J, Abe Y, Suzuki S, et al. Suppression of crack generation in GaN epitaxy on Si using cubic SiC as intermediate layers. Appl Phys Lett. 2006;88:091901-1–3.  Google Scholar
  • Katagiri M, Fang H, Miyake H, et al. MOVPE growth of GaN on Si substrate with 3C-SiC buffer layer. Jpn J Appl Phys. 2014;53(5S1):05FL09.  Google Scholar
  • Liang J, Nakamura Y, Zhan T, et al. Fabrication of high-quality GaAs/diamond heterointerface for thermal management applications. Diam Relat Mater. 2021;111:108207.  Web of Science ®Google Scholar
  • Liang J, Masuya S, Kim S, et al. Stability of diamond/Si bonding interface during device fabrication process. Appl Phys Express. 2019;12(1):016501.  Web of Science ®Google Scholar
  • Liang J, Kobayashi A, Shimizu Y, et al. Fabrication of GaN/diamond heterointerface and interfacial chemical bonding state for highly efficient device design. Adv Mater. 2021;33(43):13.  Google Scholar
  • Cheng Z, Mu F, Yates L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl Mater Interf. 2020;12(7):8376–8384.  PubMed Web of Science ®Google Scholar
  • Liang J, Miyazaki T, Morimoto M, et al. Electrical properties of Si/Si interfaces by using surface-activated bonding. J Appl Phys. 2013;114:183703-1–6.  Google Scholar
  • Liang J, Nishida S, Arai M, et al. Effects of thermal annealing process on the electrical properties of p +-Si/n-SiC heterojunctions. Appl Phys Lett. 2014;104:1–5.  Google Scholar
  • Liang J, Masuya S, Kasu M, et al. Realization of direct bonding of single crystal diamond and Si substrates. Appl Phys Lett. 2017;110:111603-1–4.  Google Scholar
  • Davydov SY. Effect of pressure on the elastic properties of silicon carbide. Phys Solid State. 2004;46(7):1200–1205.  Google Scholar
  • Howlader MMR, Suga T, Zhang F, et al. Interfacial behavior of surface activated p-GaP/n-GaAs bonded wafers at room temperature. Electrochem Solid-State Lett. 2010;13(3):H61.  Google Scholar
  • Higurashi E, Sasaki Y, Kurayama R, et al. Room-temperature direct bonding of germanium wafers by surface-activated bonding method. Jpn J Appl Phys. 2015;54(3):030213.  Google Scholar
  • Yamajo S, Yoon S, Liang J, et al. Hard X-ray photoelectron spectroscopy investigation of annealing effects on buried oxide in GaAs/Si junctions by surface-activated bonding. Appl Surf Sci. 2019;473:627–632.  Google Scholar
  • Liang J, Zhou Y, Masuya S, et al. Annealing effect of ­surface-activated bonded diamond/Si interface. Diam Relat Mater. 2019;93:187–192.  Web of Science ®Google Scholar
  • Shamim MS, Narde RS, Gonzalez-Hernandez JL, et al. Evaluation of wireless network-on-chip architectures with microchannel-based cooling in 3D multicore chips. Sustain Comput: Info Syst. 2019;21:165–178.  Google Scholar
  • Dong H, Wen B, Zhang Y, et al. Thermal conductivity of diamond/SiC nano-polycrystalline composites and phonon scattering at interfaces. ACS Omega. 2017;2(5):2344–2350.  PubMedGoogle Scholar
  • Woo K, Malakoutian M, Jo Y, et al. Interlayer engineering to achieve <1 m 2 K/GW thermal boundary resistances to diamond for effective device cooling. International Electron Devices Meeting (IEDM), 2023;9:1–4.  Google Scholar
  • Soman R, Malakoutian M, Shankar B, et al. Novel all-around diamond integration with GaN HEMTs demonstrating highly efficient device cooling. Technical Digest – International Electron Devices Meeting, IEDM. 2022. p. 3081–3084.  Google Scholar
202
Favorite
Share