Skip to main content

Room-temperature bonding of GaN and diamond via a SiC layer

Ayaka Kobayashi,Hazuki Tomiyama,Yutaka Ohno,Yasuo Shimizu,Yasuyoshi Nagai,Naoteru Shigekawa,Jianbo Liang
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2145508

Abstract

A GaN-on-diamond structure is the most promising candidate for improving the heat dissipation efficiency of GaN-based power devices. Room-temperature bonding of GaN and diamond is an efficient technique for fabricating this structure. However, it is extremely difficult to polish diamond to an average roughness (Ra) below 0.4 nm, especially for polycrystalline diamond. In this work, Room-temperature bonding of GaN and rough-surfaced diamond with a SiC layer was successfully achieved by a surface-activated bonding (SAB) method. The diamond surface’s initial Ra value was 0.768 nm, but after deposition of the SiC layer, the Ra decreased to 0.365 nm. The SiC layer formed at the as-bonded GaN/diamond interface was amorphous, with a thickness of about 7 nm. After annealing at 1000-°C, the amorphous SiC layer became polycrystalline, and its thickness increased to approximately 12 nm. These results indicate that the deposition of a SiC layer on diamond can efficiently lower the diamond surface’s roughness and thus facilitate room-temperature bonding.

Keywords

GaN/diamond interface; SiC layer; heat dissipation; thermal management; surface-activated bonding

References

  • Wu Y, Saxler A, Moore M, et al. 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 2004;25(3):117–119.
  • Ohki T, Yamada A, Minoura Y, et al. An over 20-W/mm S-band InAlGaN/GaN HEMT with SiC/diamond-bonded heat spreader. IEEE Electron Device Lett. 2019;40(2):287–290.
  • Tadjer M, Anderson T, Ancona M, et al. GaN-on-Diamond HEMT technology with T AVG= 176° C at P DC, max= 56 W/mm measured by transient thermoreflectance imaging. IEEE Electron Device Lett. 2019;40(6):881–884.
  • Sun H, Pomeroy J, Simon R, et al. Temperature-dependent thermal resistance of GaN-on-Diamond HEMT wafers. IEEE Electron Device Lett. 2016;37(5):621–624.
  • Anaya J, Bai T, Wang Y, et al. Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond. Acta Mater. 2017;139:215–225.
  • Cheng Z, Bai T, Shi J, et al. Tunable thermal energy transport across diamond membranes and diamond-Si interfaces by nanoscale graphoepitaxy. ACS Appl Mater Interfaces. 2019;11(20):18517–18527.
  • Liu T, Kong Y, Wu L, et al. 3-inch GaN-on-Diamond HEMTs with device-first transfer technology. IEEE Electron Device Lett. 2017;38(10):1417–1420.
  • Cho J, Li Z, Bozorg-Grayeli E, et al. Improved thermal interfaces of GaN-Diamond composite substrates for HEMT applications. IEEE Trans Compon Packag Manuf Technol. 2013;3(1):79–85.
  • Chao P, Chu K, Creamer C, et al. Low-temperature bonded GaN-on-Diamond HEMTs with 11 W/mm output power at 10 GHz. IEEE Trans Electron Devices. 2015;62(11):3658–3664.
  • Zhou Y, Anaya J, Pomeroy J, et al. Barrier-layer optimization for enhanced GaN-on-Diamond device cooling. ACS Appl Mater Interfaces. 2017;9(39):34416–34422.
  • Hirama K, Taniyasu Y, Kasu M. AlGaN/GaN high-electron mobility transistor with low thermal resistance grown on single-crystal diamond (111) substrates by metalorgranic vapor-phase epitaxy. Appl Phys Lett 2011;98(16):162112.
  • Sun H, Simon R, Pomeroy J, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl Phys Lett. 2015;106(11):111906.
  • Kuzmik J, Bychikhin S, Pogany D, et al. Thermal characteristics of MBE-grown GaN/AlGaN/GaN device on single crystalline diamond. J Appl Phys. 2011;109(8):086106.
  • Siddique A, Ahmed R, Anderson J, et al. Structure and interface analysis of diamond on an AlGaN/GaN HEMT utilizing an in situ SiNx interlayer grown by MOCVD. ACS Appl Electron Mater. 2019;1(8):1387–1399.
  • Mandal S, Cuenca J, Massabuau F, et al. Thick, adherent diamond films on AlN with low thermal barrier resistance. ACS Appl Mater Interfaces. 2019;11(43):40826–40834.
  • Cheng Z, Mu F, Yates L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-Diamond devices. ACS Appl Mater Interfaces. 2020;12(7):8376–8384.
  • Kim J, Lee J, Kim J, et al. Challenging endeavor to integrate gallium and carbon via direct bonding to evolve GaN on diamond architecture. Scr Mater. 2018;142:138–142.
  • Wang K, Ruan K, Hu W, et al. Room temperature bonding of GaN on diamond wafers by using Mo/Au nano-layer for high-power semiconductor devices. Scr Mater. 2020;174:87–90.
  • Francis D, Faili F, Babic D, et al. Formation and characterization of 4-inch GaN-on-diamond substrate. Diam Relat Mater. 2010;19(2-3):229–233.
  • Liang J, Masuya S, Kasu M, et al. Realization of direct bonding of single crystal diamond and Si substrates. Appl Phys Lett. 2017;110(11):111603.
  • Matsumae T, Kurashima Y, Umezawa H, et al. Low-temperature direct bonding of β-Ga2O3 and diamond substrates under atmospheric conditions. Appl Phys Lett. 2020;116(14):141602.
  • Liang J, Nakamura Y, Zhan T, et al. Fabrication of high-quality GaAs/diamond heterointerface for thermal management applications. Diam Relat Mater. 2021;111:108207.
  • Liang J, Nakamura Y, Ohno Y, et al. Room temperature direct bonding of diamond and InGaP in atmospheric air. Funct Diam. 2021;1(1):110–116.
  • Liang J, Kobayashi A, Shimizu Y, et al. Fabrication of GaN/diamond heterointerface and interfacial chemical bonding state for highly efficient device design. Adv Mater. 2021;33(43):2104564.
  • Matsumae T, Kurashima Y, Umezawa H, et al. Hydrophilic low-temperature direct bonding of diamond and Si substrates under atmospheric conditions. Scr. Mater. 2020;175:24–28.
  • Liang J, Ohno Y, Yamashita Y, et al. Characterization of nanoscopic Cu/diamond interfaces prepared by surface-activated bonding: implications for thermal management. ACS Appl Nano Mater. 2020;3(3):2455–2462.
  • Matsumae T, Kurashima Y, Umezawa H, et al. Hydrophilic direct bonding of diamond (111) substrate using treatment with H2SO4/H2O2. Jpn J Appl Phys. 2020;59(SB):SBBA01.
  • Ohno Y, Liang J, Shigekawa N, et al. Chemical bonding at room temperature via surface activation to fabricate low-resistance GaAs/Si heterointerfaces. Appl Surf Sci. 2020;525:146610.
  • Sun R, Yang X, Ohkubo Y, et al. Optimization of gas composition used in plasma chemical vaporization machining for figuring of reaction-sintered silicon carbide with low surface roughness. Sci Rep. 2018;8(1):2376.
  • Liang J, Masuya S, Kim S, et al. Stability of diamond/Si bonding interface during device fabrication process. Appl Phys Express. 2019;12(1):016501.
  • Michel K, Olivier T, Guy F, et al. Evolution and prevention of meltback etching: Case study of semipolar gan growth on patterned silicon substrates. J. Appl. Phys. 2017;122:105108.
  • Mu F, Cheng Z, Shi J, et al. High thermal boundary conductance across bonded heterogenous GaN-SiC interfaces. ACS Appl Mater Interfaces. 2019;(11):33428–33434.
  • Wang H, Xu Y, Shimono M, et al. Computation of interfacial thermal resistance by phonon diffuse mismatch model. Mater Trans. 2007;48(9):2349–2352. doi:10.2320/matertrans.MAW200717.