Skip to main content
Research Article

Effect of defects on Q factors of single-crystal diamond MEMS resonators

Zilong Zhang ,
Guo Chen ,
Keyun Gu ,
Satoshi Koizumi ,
Meiyong Liao
Volume 3, Issue 1 (2023)
DOI: 10.1080/26941112.2023.2221280

Abstract

A resonator with a high Q factor is generally pursued in the single-crystal diamond (SCD) microelectromechanical system (MEMS) for high-performance sensors. In this report, we investigate the oxygen etching effect of SCD on the Q factors of the SCD resonators by using the Raman spectroscopy spatial mapping. We aim to establish the etch pit effect on the Q factors of the SCD MEMS resonators. The 2D Raman imaging technique discloses the dislocations and the local stress in the SCD MEMS resonators in microscale. It is observed that the full width half maximum (FWHM) of the Raman spectra of the SCD resonators has marked relationship with the Q factors of the SCD resonators. The etch pits resulted from the dislocations have weak influence on the Q factors of the SCD resonators.

Keywords

Single-crystal diamond; MEMS resonator; Q factor; dislocation

References

  • Liao M, Koide Y, Sang L. Single crystal diamond micromechanical and nanomechanical resonators. Novel aspects of diamond. Berlin: Academic Press; 2019. [Crossref], [Google Scholar]
  • Liao M. Progress in semiconductor diamond photodetectors and MEMS sensors. Funct Diam. 2021;1(1):1–9. [Google Scholar]
  • Zhang Z, Wu H, Sang L, et al. Single-crystal diamond microelectromechanical resonator integrated with a magneto-strictive galfenol film for magnetic sensing. Carbon. 2019;152:788–795. [Crossref], [Web of Science ®], [Google Scholar]
  • Tao Y, Boss JM, Moores B, et al. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nature Commun. 2014;5(1):3638. [Crossref], [PubMed], [Google Scholar]
  • Olivero P, Rubanov S, Reichart P, et al. Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond. Adv. Mater. 2005;17(20):2427–2430. [Crossref], [Web of Science ®], [Google Scholar]
  • Vashist SK. A review of microcantilevers for sensing applications. J Nanotech. 2007;3:1–18. [Google Scholar]
  • Imboden M, Mohanty P. Dissipation in nanoelectromechanical systems. Phys Rep. 2014;534(3):89–146. [Crossref], [Web of Science ®], [Google Scholar]
  • Cleland AN. Thermomechanical noise limits on parametric sensing with nanomechanical resonators. New J. Phys. 2005;7(1):235–235. [Crossref], [Google Scholar]
  • Yasumura KY, Stowe TD, Chow EM, et al. Quality factors in micron-and submicron-thick cantilevers. J. Micro­e­lectromech. Syst. 2000;9(1):117–125. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhang Z, Wu Y, Sang L, et al. Coupling of magneto-strictive FeGa film with single-crystal diamond MEMS resonator for high-reliability magnetic sensing at high temperatures. Mater Res Lett. 2020;8(5):180–186. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Zhang Z, Wu H, Sang L, et al. Enhancing Delta E effect at high temperatures of galfenol/Ti/single-crystal diamond resonators for magnetic sensing. ACS Appl. Mater. Interfaces. 2020;12(20):23155–23164. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Liao M, Toda M, Sang L, et al. Energy dissipation in micron-and submicron-thick single crystal diamond mechanical resonators. Appl. Phys. Lett. 2014;105(25):251904. [Crossref], [Web of Science ®], [Google Scholar]
  • Wu H, Sang L, Li Y, et al. Reducing intrinsic energy dissipation in diamond-on-diamond mechanical resonators toward one million quality factor. Phys Rev Mater. 2018;2(9):090601. [Crossref], [Web of Science ®], [Google Scholar]
  • Tallaire A, Ouisse T, Lantreibecq A, et al. Identification of dislocations in synthetic chemically vapor deposited diamond single crystals. Cryst Growth Des. 2016;16(5):2741–2746. [Crossref], [Google Scholar]
  • Achard J, Tallaire A, Mille V, et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates. Phys. Status Solidi A. 2014;211(10):2264–2267. [Crossref], [Google Scholar]
  • Friel I, Clewes S, Dhillon H, et al. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition. Diam Relat Mater. 2009;18(5–8):808–815. [Crossref], [Google Scholar]
  • Ovartchaiyapong P, Pascal L, Myers B, et al. High quality factor single-crystal diamond mechanical resonators. Appl. Phys. Lett. 2012;101(16):163505. [Crossref], [Web of Science ®], [Google Scholar]
  • Liao M, Toda M, Sang L, et al. Improvement of the quality factor of single crystal diamond mechanical resonators. Jpn. J. Appl. Phys. 2017;56(2):024101. [Crossref], [Web of Science ®], [Google Scholar]
  • Liao M, Li C, Hishita S, et al. Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems. J. Micromech. Microeng. 2010;20(8):085002. [Crossref], [Web of Science ®], [Google Scholar]
  • Sun H, Sang L, Wu H, et al. Effect of deep-defects excitation on mechanical energy dissipation of single-crystal diamond. Phys. Rev. Lett. 2020;125(20):206802. [Crossref], [PubMed], [Google Scholar]
  • Xu J, Lu K, Fan D, et al. Different etching mechanisms of diamond by oxygen and hydrogen plasma: a reactive molecular dynamics study. J. Phys. Chem. C. 2021;125(30):16711–16718. [Crossref], [Google Scholar]
  • Tsubouchi N, Mokuno Y, Shikata S. Characterizations of etch pits formed on single crystal diamond surface using oxygen/hydrogen plasma surface treatment. Diam Relat Mater. 2016;63:43–46. [Crossref], [Google Scholar]
  • Weaver TW, Young SP, et al. Vibration problems in engineering. Hoboken, USA: Academic Press; 1974. [Google Scholar]
  • Ivanov O, Muchnikov A, Chernov V, et al. Experimental study of hydrogen plasma etching of (100) single crystal diamond in a MPACVD reactor. Mater Lett. 2015;151:115–118. [Crossref], [Google Scholar]
  • Yurov V, Bushuev E, Bolshakov A, et al. Etching kinetics of (100) single crystal diamond surfaces in a hydrogen microwave plasma, studied with in situ low-coherence interferometry. Phys. Status Solidi A. 2017;214(11):1700177. [Crossref], [Google Scholar]
  • Seitner MJ, Gajo K, Weig EM. Damping of metallized bilayer nanomechanical resonators at room temperature. Appl. Phys. Lett. 2014;105(21):213101. [Crossref], [Google Scholar]
  • Khokhryakov AF, Palyanov YN. Revealing of dislocations in diamond crystals by the selective etching method. J Cryst Growth. 2006;293(2):469–474. [Crossref], [Google Scholar]
  • Shimaoka T, Ichikawa K, Koizumi S, et al. Detection of defects in diamond by etch‐pit formation. Phys. Status Solidi A. 2019;216(21):1900247. [Crossref], [Google Scholar]
  • Gaukroger M, Martineau P, Crowder M, et al. X-ray topography studies of dislocations in single crystal CVD diamond. Diam Relat Mater. 2008;17(3):262–269. [Crossref], [Web of Science ®], [Google Scholar]
  • Teraji T, Yoshizaki S, Mitani S, et al. Transport properties of electron-beam and photo excited carriers in high-quality single-crystalline chemical-vapor-deposition diamond films. J Appl Phys. 2004;96(12):7300–7305. [Crossref], [Google Scholar]
  • Hoa LTM, Ouisse T, Chaussende D, et al. Birefringence microscopy of unit dislocations in diamond. Cryst Growth Des. 2014;14(11):5761–5766. [Crossref], [Google Scholar]
  • Ichikawa K, Shimaoka T, Kato Y, et al. Dislocations in chemical vapor deposition diamond layer detected by confocal raman imaging. J Appl Phys. 2020;128(15):155302. [Crossref], [Google Scholar]
  • Von Kaenel Y, Stiegler J, Michler J, et al. Stress distribution in heteroepitaxial chemical vapor deposited diamond films. J Appl Phys. 1997;81(4):1726–1736. [Crossref], [Google Scholar]
  • Shen X, Lv Z, Ichikawa K, et al. Stress effect on the resonance properties of single-crystal diamond cantilever resonators for microscopy applications. Ultramicroscopy. 2022;234:113464. [Crossref], [PubMed], [Google Scholar]