Skip to main content

Progress in semiconductor diamond photodetectors and MEMS sensors

Meiyong Liao
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2021.1877019

Abstract

Diamond with an ultra-wide bandgap shows intrinsic performance that is extraordinarily superior to those of the currently available wide-bandgap semiconductors for deep-ultraviolet (DUV) photoelectronics and microelectromechanical systems (MEMS). The wide-bandgap energy of diamond offers the intrinsic advantage for solar-blind detection of DUV light. The recent progress in high-quality single-crystal diamond growth, doping, and devices design have led to the development of solar-blind DUV detectors satisfying the requirement of high Sensitivity, high Signal-to-Noise ratio, high spectral Selectivity, high Speed, and high Stability. On the other hand, the outstanding mechanical hardness, chemical inertness, and intrinsic low mechanical loss of diamond enable the development of MEMS sensors with boosted sensitivity and robustness. The micromachining technologies for diamond developed in these years have opened the avenue for the fabrication of high-quality single-crystal diamond mechanical resonators. In this review, we report on the recent progress in diamond DUV detectors and MEMS sensors, which includes the device principles, design, fabrication, micromachining of diamond, and devices physics. The potential applications of these sensors and a perspective are also described.

Keywords

Single-crystal diamond; photodetector; MEMS; sensors

References

  • Gabler J, Pleger S. Precision and micro CVD diamond-coated grinding tools. Int J Mach Tools Manuf. 2010;50(4):420–424.
  • Witzendorff P, Moalem A, Kling R, et al. Laser dressing of metal bonded diamond blades for cutting of hard brittle materials. J Laser Appl. 2012;24(2):022002.
  • Zeren M, Karagoz S. Sintering of polycrystalline diamond cutting tools. Mater Des. 2007;28(3):1055–1058.
  • Sexton TN, Cooley CH. Polycrystalline diamond thrust bearings for down-hole oil and gas drilling tools. Wear. 2009;267(5-8):1041–1045.
  • Schuelke T, Grotjohn TA. Diamond polishing. Diamond Relat Mater. 2013;32:17–26.
  • Liao M, Shen B, Wang Z. Ultra-wide bandgap semiconductor materials. Oxford (UK): Elsevier; 2019.
  • Wort CJH, Balmer RS. Diamond as an electronic material. Mater Today. 2008;11(1-2):22–28.
  • Umezawa H. Recent advances in diamond power semiconductor devices. Mater Sci Semicond Process. 2018;78:147–156.
  • Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J Phys D Appl Phys. 2020;53(9):093001.
  • Kamo M, Sato Y, Matsumoto S, et al. Diamond synthesis from gas phase in microwave plasma. J Cryst Growth. 1983;62(3):642–644.
  • Matsumoto S, Sato Y, Kamo M, et al. Vapor deposition of diamond particles from methane. Jpn J Appl Phys. 1982;21(Part 2, No. 4):L183–L185.
  • Shinkata S. Single crystal diamond wafers for high power electronics. Diamond Relat Mater. 2016;65:168–175.
  • Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017;7(1):44462.
  • Aleksov A, Kubovic M, Kaeb M, et al. Diamond field effect transistors—concepts and challenges. Diamond Relat Mater. 2003;12(3-7):391–398.
  • Sasama Y, Komatsu K, Moriyama S, et al. High-mobility diamond field effect transistor with a monocrystalline h-BN gate dielectric. APL Mater. 2018;6(11):111105.
  • Syamsul M, Oi N, Okubo S, et al. Heteroepitaxial diamond field-effect transistor for high voltage applications. IEEE Electron Device Lett. 2018;39(1):51–54.
  • Liao M, Sang L, Shimaoka T, et al. Energy-efficient metal-insulator-metal-semiconductor field-effect transistor based on 2D carrier gas. Adv Electron Mater. 2019;5(5):1800832.
  • Kawarada H, Tsuboi H, Naruo T, et al. C-H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. Appl Phys Lett. 2014;105(1):013510.
  • Umezawa H, Matsumoto T, Shikata S. Diamond metal–semiconductor field-effect transistor with breakdown voltage over 1.5 kV. IEEE Electron Device Lett. 2014;35(11):1112–1114.
  • Funaki T, Hirano M, Umezawa H, et al. High temperature switching operation of a power diamond Schottky barrier diode. IEICE Electron Express. 2012;9(24):1835–1841.
  • Zhou C, Wang J, Guo J, et al. Radiofrequency performance of hydrogenated diamond MOSFETs with alumina. Appl Phys Lett. 2019;114(6):063501.
  • Kasu M, Ueda K, Yamauchi Y, et al. Diamond-based RF power transistors: fundamentals and applications. Diamond Relat Mater. 2007;16(4-7):1010–1015.
  • Yu C, Zhou C, Guo J, et al. 650 mW/mm output power density of H-terminated polycrystalline diamond MISFET at 10 GHz. Electron Lett. 2020;56(7):334–335.
  • Hirama K, Takayanagi H, Yamauchi S, et al. High-performance p-channel diamond MOSFETs with alumina gate insulator. 2007 IEEE International Electron Devices Meeting; 2007; Dec 10–12; Washington, DC. p. 873–876.
  • Yu X, Zhou J, Qi C, et al. A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz. IEEE Electron Device Lett. 2018;39(9):1373–1376.
  • Koizumi S, Watanabe K, Hasegawa M, et al. Ultraviolet emission from a diamond pn junction. Science. 2001;292(5523):1899–1901.
  • Kuwabara D, Makino T, Takeuchi D, et al. Unique temperature dependence of deep ultraviolet emission intensity for diamond light emitting diodes. Jpn J Appl Phys. 2014;53(5S1):05FP02.
  • Makino T, Yoshino K, Sakai N, et al. Enhancement in emission efficiency of diamond deep-ultraviolet light emitting diode. Appl Phys Lett. 2011;99(6):061110.
  • Liao M, Koide Y, Alvarez J. Thermally-stable visible-blind diamond photodiode using WC Schottky contact. Appl Phys Lett. 2005;87(2):022105.
  • Balducci A, Bruzzi M, De Sio A, et al. Diamond-based photoconductors for deep UV detection. Nucl Instrum Methods Phys Res A. 2006;567(1):188–191.
  • Kania DR, Landstrass MI, Plano MA, et al. Diamond radiation detectors. Diamond Relat Mater. 1993;2(5-7):1012–1019.
  • Chen M, Best JP, Shorubalko I, et al. Influence of helium ion irradiation on the structure and strength of diamond. Carbon. 2020;158:337–345.
  • Fern GR, Hobson PR, Metcalfe A, et al. Performance of four CVD diamond radiation sensors at high temperature. Nucl Inst. Methods Phys Res A. 2020;958(162486):162486.
  • Ueno K, Tadokoro T, Ueno Y, et al. Heat and radiation resistances of diamond semiconductor in gamma-ray detection. Jpn J Appl Phys. 2019;58(10):106509.
  • Gervino G, Bizzaro S, Palmisano C, et al. Characterization of CVD-diamonds for radiation detection. Nucl Instrum Methods Phys Res A. 2013;718:325–326.
  • Kohn E, Gluche P, Adamschik M. Diamond MEMS — a new emerging technology. Diamond Relat Mater. 1999;8(2-5):934–940.
  • Liao M, Sang L, Teraji T, et al. Single crystal diamond NEMS/MEMS with electrically tailored self-sensing enhancing actuation. Adv Mater Technol. 2019;4(2):1800325.
  • Possas-Abreu M, Rousseau L, Ghassemi F, et al. Biomimetic diamond MEMS sensors based on odorant-binding proteins: sensors validation through an autonomous electronic system. 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN); May 2017; Montréal, Canada. p.7968909.
  • Sumant A, Auciello O, Carpick R, et al. Ultrananocrystalline and nanocrystalline diamond thin films for MEMS/NEMS applications. MRS Bull. 2010;35(4):281–288.
  • Schirhagl R, Chang K, Loretz M, et al. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem. 2014;65(1):83–105.
  • Faraon A, Santori C, Huang Z, et al. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys Rev Lett. 2012;109(3):033604.
  • Hall LT, Cole JH, Hill CD, et al. Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. Phys Rev Lett. 2009;103(22):220802.
  • Sarua A, Ji H, Hilton KP, et al. Thermal boundary resistance between GaN and substrate in AlGaN/GaN electronic devices. IEEE Trans Electron Devices. 2007;54(12):3152–3158.
  • Hirama K, Kasu M, Taniyasu Y. RF high-power operation of AlGaN/GaN HEMTs epitaxially grown on diamond. IEEE Electron Device Lett. 2012;33(4):513–515.
  • Han Y, Lau BL, Zhang X, et al. Enhancement of hotspot cooling with diamond heat spreader on Cu microchannel heat sink for GaN-on-Si device. IEEE Trans Compon Packag Manufact Technol. 2014;4(6):983–990.
  • Cheng Z, Bai T, Shi J, et al. Tunable thermal energy transport across diamond membranes and diamond − Si interfaces by nanoscale graphoepitaxy. ACS Appl Mater Interfaces. 2019;11(20):18517–18527. − 
  • Matsumae T, Kurashima Y, Umezawa H, et al. Low-temperature direct bonding of β-Ga2O3 and diamond substrates under atmospheric conditions. Appl Phys Lett. 2020;116(14):141602.
  • Howe RT, Muller RS. Polycrystalline silicon micromechanical beams. Electrochem Soc Spring Meeting. 1982;82(1):184–185.
  • Fang W, Li SS, Cheng CL, et al. CMOS MEMS: a key technology towards the “More than Moore” era. 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII); 2013; Barcelona; p. 2513–2518.
  • Fischer AC, Forsberg F, Lapisa M, et al. Integrating MEMS and ICs. Microsyst. Nanoeng. 2015;1:15005.
  • Sage E, Sansa M, Fostner S, et al. Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators. Nat Commun. 2018;9:3283.
  • Majumder S, Lampen J, Morrison R, et al. A packaged, high-lifetime ohmic MEMS RF switch. IEEE MTT-S International Microwave Symposium Digest; 2003; Philadelphia, PA, USA. Vol. 3, p. 1935–1938.
  • Awasthi S, Joshi A. MEMS accelerometer based system for motion analysis. 2015 2nd International Conference on Electronics and Communication Systems (ICECS); 2015; Coimbatore. p. 762–767.
  • Yeow TW, Law KLE, Goldenberg A. MEMS optical switches. IEEE Commun Mag. 2001;39(11):158–163.
  • Ahmed M, Butler DP, Celik-Butler Z. MEMS absolute pressure sensor on a flexible substrate. 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS); 2012; Paris. p. 575–578.
  • Robertson R, Fox JJ, Martin A. Two types of diamond. Philos Trans R. Soc Lond. 1934;A232(707-720):463–535.
  • McKeag RD, Chan SM, Jackman RB. Polycrystalline diamond photoconductive device with high UV-visible discrimination. Appl Phys Lett. 1995;67(15):2117–2119.
  • Semiconductor diamond. In: Liao M, Shen B, Wang Z, editors. Ultra-wide bandgap semiconductor materials; Oxford (UK): Elsevier; 2019. 111–261.
  • Polyakov VI, Rukovishnikov AI, Rossukanyi NM, et al. Photodetectors with CVD diamond films: Electrical and photoelectrical properties photoconductive and photodiode structures. Diamond Relat Mater. 1998;7(6):821–825.
  • Liao M, Sang L, Teraji T, et al. Comprehensive investigation of single crystal diamond deep-ultraviolet detectors. Jpn J Appl Phys. 2012;51(9R):090115.
  • Sang L, Liao M, Sumiya M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors. 2013;13(8):10482–10518.
  • Bube RH. Photoelectronic properties of semiconductors. Cambridge: Cambridge University Press, 1992.
  • Sze SM. Physics of semiconductor devices. 2nd ed. New York: Wiley, 1981.
  • Feruglio S, Courcier T, Tsiakaka O, et al. A CMOS buried quad p-n junction photodetector model. IEEE Sensors J. 2016;16(6):1611–1620.
  • Alema F, Hertog B, Mukhopadhyay P, et al. Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film. APL Mater. 2019;7(2):022527.
  • Teraji T, Yoshizaki S, Wada H, et al. Highly sensitive UV photodetectors fabricated using high-quality single-crystalline CVD diamond films. Diamond Relat Mater. 2004;13(4-8):858–862.
  • Liao M, Koide Y. High-performance metal-semiconductor-metal-deep-ultraviolet photodetectors based on homoepitaxial diamond thin film. Appl Phys Lett. 2006;89(11):113509.
  • Takeuchi D, Yamanaka S, Watanabe H, et al. Device grade B-doped homoepitaxial diamond thin films. Phys Stat Sol A. 2001;186(2):269–280.
  • Rohrer E, Graeff CFO, Janssen R, et al. Nitrogen-related dopant and defect states in CVD diamond. Phys Rev B. 1996;54(11):7874–7880.
  • Liao M, Koide Y, Alvarez J. Thermal stability of diamond photodiodes using WC as Schottky contact. Jpn J Appl Phys. 2005;44(11):7832–7838.
  • Liao M, Koide Y, Alvarez J. Crystallographic and electrical characterization of tungsten carbide thin films for Schottky contact of diamond photodiode. J Vac Sci Technol B. 2006;23(1):185–189.
  • Liao M, Alvarez J, Koide Y. Photovoltaic Schottky ultraviolet detectors fabricated on boron-doped homoepitaxial diamond layer. Appl Phys Lett. 2006;88(3):033504.
  • Liao M, Alvarez J, Koide Y. Single Schottky-barrier photodiode with interdigitated finger geometry: application to diamond. Appl Phys Lett. 2007;90(12):123507.
  • Koizumi S, Kamo M, Sato Y, et al. Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. Appl Phys Lett. 1997;71(8):1065–1967.
  • BenMoussa A, Schuhle U, Scholze F, et al. Radiometric characteristics of new diamond pin-photodiodes. Meas Sci Technol. 2006;17(4):913–917.
  • Sang L, Hu J, Zou R, et al. Arbitrary multicolor photodetection by hetero-integrated semiconductor nanostructures. Sci Rep. 2013;3(1):2368.
  • Chen Y, Lu Y, Lin C, et al. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J Mater Chem C. 2018;6(21):5727–5732.
  • Liu Z, Li F, Li S, et al. Fabrication of UV photodetector on TiO2/diamond film. Sci Rep. 2015;5(1):14420.
  • Chang X, Wang Y, Zhang X, et al. UV-photodetector based on NiO/diamond film. Appl Phys Lett. 2018;112(3):032103.
  • Alvarez J, Liao M, Koide Y, et al. Ultraviolet detectors based on ultraviolet–ozone modified hydrogenated diamond surfaces. Appl Phys Express. 2009;2(6):065501.
  • Alvarez J, Liao M, Koide Y. Large deep-ultraviolet photocurrent in metal-semiconductor-metal structures fabricated on as-grown boron-doped diamond. Appl Phys Lett. 2005;87(11):113507.
  • Lin C, Lu Y, Yang X, et al. Diamond‐based all‐carbon photodetectors for solar‐blind imaging. Adv Opt Mater. 2018;6(15):1800068.
  • Lin C, Lu Y, Tian Y, et al. Diamond based photodetectors for solar-blind communication. Opt Exp. 2019;27(21):29962.
  • Carrano JC, Lambert DJH, Eiting CJ, et al. GaN avalanche photodiodes. Appl Phys Lett. 2000;76(7):924–926.
  • Katz O, Garber V, Meyler B, et al. Gain mechanism in GaN Schottky ultraviolet detectors. Appl Phys Lett. 2001;79(10):1417–1419.
  • Liao M, Koide Y, Alvarez J, et al. Persistent positive and transient negative photoconductivity in diamond photodetectors. Phys Rev B. 2008;78(4):045112.
  • Liao M, Wang X, Teraji T, et al. Light intensity dependence of photocurrent gain in single crystal diamond photodetectors. Phys Rev B. 2010;81(3):033304.
  • Koide Y, Liao M, Alvarez J, et al. Schottky photodiode using submicron thick diamond epilayer for flame sensing. Nano-Micro Lett. 2009;1(1):30–33.
  • Zhou AF, Velazquez R, Wang X, et al. Nanoplasmonic 1D diamond UV photodetectors with high performance. ACS Appl Mater Interfaces. 2019;11(41):38068–38074.
  • Lu YJ, Lin CN, Shan CX, et al. Growth, properties, and photodetection applications. Adv Opt Mater. 2018;6(20):1800359.
  • Liu Z, Zhao D, Ao J, et al. Responsivity improvement of Ti–diamond–Ti structured UV photodetector through photocurrent gain. Opt Exp. 2018;26(13):17092–17098.
  • Sumant AV, Auciello O, Liao M, et al. MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films. MRS Bull. 2014;39(6):511–516.
  • Liao M, Koide Y. Carbon-based materials: growth, properties, MEMS/NEMS technologies, and MEM/NEM switches. Crit Rev Solid State Mater Sci. 2011;36(2):66–101.
  • Najar H, Yang C, Heidari A, et al. Quality factor in polycrystalline diamond micromechanical flexural resonators. J Microelectromech Syst. 2015;24(6):2152–2160.
  • Gaidarzhy A, Imboden A, Mohanty P, et al. High quality factor gigahertz frequencies in nanomechanical diamond resonators. Appl Phys Lett. 2007;91(20):203503.
  • Srinivasan S, Hiller J, Kabius B, et al. Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems. Appl Phys Lett. 2007;90(13):134101.
  • Adiga VP, Sumant AV, Sumant S, et al. Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators. Phys Rev B. 2009;79(24):245403.
  • Liao M, Li C, Hishita S, et al. Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems. J Micromech Microeng. 2010;20(8):085002.
  • Ovartchaiyapong P, Pascal LMA, Myers BA, et al. High quality factor single-crystal diamond mechanical resonators. Appl Phys Lett. 2012;101(16):163505.
  • Tao Y, Boss JM, Moores BA, et al. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat Commun. 2014;5:3638.
  • Burek MJ, de Leon NP, Shields BJ, et al. Free-standing mechanical and photonic nanostructures in single-crystal diamond. Nano Lett. 2012;12(12):6084–6089.
  • Sohn YI, Miller R, Venkataraman V, et al. Mechanical and optical nanodevices in single-crystal quartz. Appl Phys Lett. 2017;111(26):263103.
  • Latawiec P, Burek MJ, Sohn YI, et al. Faraday cage angled-etching of nanostructures in bulk dielectrics. J Vac Sci Technol B. 2016;34(4):041801.
  • Parikh NR, Hunn JD, McGucken E, et al. Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing. Appl Phys Lett. 1992;61(26):3124–3126.
  • Marchywka M, Pehrsson PE, Vestyck DJ, et al. Low energy ion implantation and electrochemical separation of diamond films. Appl Phys Lett. 1993;63(25):3521–3523.
  • Wang CF, Hu EL, Yang J, et al. Fabrication of suspended single crystal diamond devices by electrochemical etch. J Vac Sci Technol B. 2007;25(3):730–733.
  • Olivero P, Rubanov S, Reichart P, et al. Ion‐beam‐assisted lift‐off technique for three‐dimensional micromachining of freestanding single‐crystal diamond. Adv Mater. 2005;17(20):2427–2430.
  • Liao M, Hishita S, Watanabe E, et al. Suspended single‐crystal diamond nanowires for high‐performance nanoelectromechanical switches. Adv Mater. 2010;22(47):5393–5397.
  • Miller JML, Ansari A, Heinz DB, et al. Effective quality factor tuning mechanisms in micromechanical resonators. Appl Phys Rev. 2018;5(4):041307.
  • Smith DPE. Limits of force microscopy. Rev Sci Instrum. 1995;66(5):3191–3195.
  • Albrecht TR, Grutter P, Horne D, et al. Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity. J Appl Phys. 1991;69(2):668–673.
  • Masmanidis SC, Karabalin RB, De Vlaminck I, et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science. 2007;317 (5839):780–783.
  • Rugar D, Grütter P. Mechanical parametric amplification and thermomechanical noise squeezing. Phys Rev Lett. 1991;67(6):699–702.
  • Knobel RD, Cleland AN. Nanometre-scale displacement sensing using a single electron transistor. Nature. 2003;424(6946):291–293.
  • Sampathkumar A, Murray TW, Ekinci KL. Photothermal operation of high frequency nanoelectromechanical systems. Appl Phys Lett. 2006;88(22):223104.
  • Bargatin I, Kozinsky I, Roukes ML. Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators. Appl Phys Lett. 2007;90(9):093116.
  • Liao M, Toda M, Sang L, et al. Energy dissipation in micron- and submicron-thick single crystal diamond mechanical resonators. Appl Phys Lett. 2014; 105(25): 251904.
  • Gavan KB, Westra HJR, Drift EW, et al. Size-dependent effective Young’s modulus of silicon nitride cantilevers. Appl Phys Lett. 2009;94(23):233108.
  • Liao M, Koide Y, Sang L. Single crystal diamond micromechanical and nanomechanical resonators. In: Yang N, editor. Novel aspects of diamond. Topics in applied physics. Vol. 121. Chapter 4. Cham: Springer; 2019.
  • Lifshitz R, Roukes ML. Thermoelastic damping in micro- and nanomechanical systems. Phys Rev B. 2000;61(8):5600–5609.
  • Photiadis DM, Judge JA. Attachment losses of high oscillators. Appl Phys Lett. 2004;85(3):482–485.
  • Yang J, Ono T, Esashi M. Energy dissipation in submicrometer thick single-crystal silicon cantilevers. J Microelectromech Syst. 2002;11(6):775–783.
  • Adiga VP. Mechanical stiffness and diffipation in ultrananocrystalline diamond films. Publicly accessible Penn Dissertations; 2010. Paper 413.
  • Liao M, Toda M, Sang L, et al. Improvement of the quality factor of single crystal diamond mechanical resonators. Jpn J Appl Phys. 2017;56(2):024101.
  • Wu H, Sang L, Teraji T, et al. Reducing energy dissipation and surface effect of diamond nanoelectromechanical resonators by annealing in oxygen ambient. Carbon. 2017;124:281–187.
  • Wu H, Sang L, Li Y, et al. Reducing intrinsic energy dissipation in diamond-on-diamond mechanical resonators toward one million quality factor. Phys Rev Mater. 2018;2(9):090601.
  • Cooper A, Magesan E, Yum H, et al. Time-resolved magnetic sensing with electronic spins in diamond. Nat Commun. 2014;5:3141.
  • Park B, Li M, Liyanage S, et al. Lorentz force based resonant MEMS magnetic-field sensor with optical readout. Sens Actuator A Phys. 2016;241:12–18.
  • Niekiel F, Su J, Bodduluri MT, et al. Highly sensitive MEMS magnetic field sensors with integrated powder-based permanent magnets. Sens Actuator A Phys. 2019;297:111560.
  • Gojdka B, Jahns R, Meurisch K, et al. Fully integrable magnetic field sensor based on delta-E effect. Appl Phys Lett. 2011;99(22):223502.
  • Zhang Z, Wu H, Sang L, et al. Single-crystal diamond microelectromechanical resonator integrating with magneto-strictive galfenol film for magnetic sensor. Carbon. 2019;152:788–795.
  • Zhang Z, Wu Y, Sang L, et al. Coupling of magneto-strictive FeGa film with single-crystal diamond MEMS resonator for high-reliability magnetic sensing at high temperatures. Mater Res Lett. 2020;8(5):180–186.
  • Zhang Z, Wu H, Sang L, et al. Enhancing delta E effect at high temperatures of galfenol-Ti-single crystal diamond resonators for magnetic sensing. ACS Appl Mater Interfaces. 2020;12(20):23155–23164.
  • Zhang Z, Sang L, Huang J, et al. Enhanced magnetic sensing performance of diamond MEMS magnetic sensor with boron-doped FeGa film. Carbon. 2020; 170: 294–301.
  • Wulz T, Gerding W, Lavrik N, et al. Realization of deep 3D metal electrodes in diamond radiation detectors. Appl Phys Lett. 2018;112(22):222101.