Skip to main content
Review Article

Research Progress on Silicon Vacancy Color Centers in Diamond

Chengke Chen ,
Bo Jiang ,
Xiaojun Hu
Volume 4, Issue 1 (2024)
DOI: 10.1080/26941112.2024.2332346

Keywords

Diamond; SiV color centers; photoluminescence; charge state; single-photon source

References

  • Aharonovich I, Castelletto S, Simpson DA, et al. Diamond-based single-photon emitters. Rep Prog Phys. 2011;74(7):1. Web of Science ®Google Scholar

  • Sedov VS, Krivobok VS, Khomich AV, et al. Color centers in silic on-doped diamond films. J Appl Spectrosc. 2016;83(2):229–22. Web of Science ®Google Scholar

  • Yang B, Yu B, Lu J, et al. Tailoring optical emission of silicon-vacancy centers in two-dimensional diamond nanosheets via a two-step oxidation approach. Func Diamond. 2023;3(1):2211074. Google Scholar

  • Liu K, Zhang S, Ralchenko V, et al. Tailoring of typical color centers in diamond for photonics. Adv Mater. 2021;33(6):e2000891. PubMed Web of Science ®Google Scholar

  • Mei Y, Fan D, Lu S, et al. SiV center photoluminescence induced by C = O termination in nanocrystalline diamond and graphite loops hybridized films. J Appl Phys. 2016;120(22):225107. Web of Science ®Google Scholar

  • Zhang H, Chen C, Mei Y, et al. Micron-sized diamond particles containing Ge-V and Si-V color centers. Chin Phys B. 2019;28(7):076103. Web of Science ®Google Scholar

  • Mei YS, Chen CK, Fan D, et al. Enhanced SiV photoluminescence by oxidation-induced nano-structures on diamond particle surfaces. Nanoscale. 2019;11(2):656–662. PubMed Web of Science ®Google Scholar

  • Hu X-J, Li N. Oxygen ion implantation enhanced silicon-vacancy photoluminescence and n-type conductivity of ultrananocrystalline diamond films. Chin Phys Lett. 2013;30(8):088102. Web of Science ®Google Scholar

  • Chen C, Mei Y, Cui J, et al. Man-made synthesis of ultrafine photoluminescent nanodiamonds containing less than three silicon-vacancy colour centres. Carbon. 2018;139:982–988. Web of Science ®Google Scholar

  • Mei YS, Chen CK, Jiang MY, et al. Photoluminescence of SiV centers in CVD diamond particles with specific crystallographic planes. Chin Phys B. 2019;28(1):016101. Web of Science ®Google Scholar

  • Trojánek F, Hamráček K, Hanák M, et al. Light emission dynamics of silicon vacancy centers in a polycrystalline diamond thin film. Nanoscale. 2023;15(6):2734–2738. PubMed Web of Science ®Google Scholar

  • Yu B, Yang B, Li H, et al. Effect of surface oxidation on photoluminescence of silicon vacancy color centers in the nanocrystalline diamond films. Appl Surf Sci. 2021;552:149475. Web of Science ®Google Scholar

  • Liu W, Alam MNA, Liu Y, et al. Silicon-vacancy nanodiamonds as high performance near-infrared emitters for live-cell dual-color imaging and thermometry. Nano Lett. 2022;22(7):2881–2888. PubMed Web of Science ®Google Scholar

  • Choi S, Leong V, Davydov VA, et al. Varying temperature and silicon content in nanodiamond growth:effects on silicon-vacancy centres. Sci Rep. 2018;8:3792. Web of Science ®Google Scholar

  • Wang CL, Kurtsiefer C, Weinfurter H, et al. Single photon emission from SiV centres in diamond produced by ion implantation. J Phys B At Mol Opt Phys. 2006;39(1):37–41. Web of Science ®Google Scholar

  • Marseglia L, Saha K, Ajoy A, et al. Bright nanowire single photon source based on SiV centers in diamond. Opt Express. 2018;26(1):80–89. PubMed Web of Science ®Google Scholar

  • Piracha AH, Rath P, Ganesan K, et al. Scalable fabrication of integrated nanophotonic circuits on arrays of thin single crystal diamond membrane windows. Nano Lett. 2016;16(5):3341–3347. PubMed Web of Science ®Google Scholar

  • Li L, Chen EH, Zheng J, et al. Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett. 2015;15(3):1493–1497. PubMed Web of Science ®Google Scholar

  • Schröder T, Trusheim ME, Walsh M, et al. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nat Commun. 2017;8(1):1–7. PubMedGoogle Scholar

  • Ekimov EA, Kondrin MV. Vacancy–impurity centers in diamond:prospects for synthesis and applications. Phys-Usp. 2017;60(6):539–558. Web of Science ®Google Scholar

  • Bradac C, Gao W, Forneris J, et al. Quantum nanophotonics with group IV defects in diamond. Nat Commun. 2019;10(1):5625. PubMedGoogle Scholar

  • Zeleneev AI, Bolshedvorskii SV, Soshenko VV, et al. Nanodiamonds with SiV colour centres for quantum technologies. Quantum Electron. 2020;50(3):299–304. Web of Science ®Google Scholar

  • Rogers LJ, Jahnke KD, Metsch MH, et al. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys Rev Lett. 2014;113:263602. PubMed Web of Science ®Google Scholar

  • Benjamin Pingault JNB, Schulte CHH, Arend C, et al. All-optical formation of coherent dark states of silicon-vacancy spins in diamond. Phys Rev Lett. 2014;113:263601. PubMed Web of Science ®Google Scholar

  • Gali A, Maze JR. Ab initio study of the split silicon-vacancy defect in diamond:electronic structure and related properties. Phys Rev B. 2013;88:235205. Google Scholar

  • Zhang T, Gupta M, Jing J, et al. High-quality diamond microparticles containing SiV centers grown by chemical vapor deposition with preselected seeds. J Mater Chem C. 2022;10(37):13734–13740. Web of Science ®Google Scholar

  • Hepp C, Müller T, Waselowski V, et al. Electronic structure of the silicon vacancy color center in diamond. Phys Rev Lett. 2014;112(3):036405. PubMed Web of Science ®Google Scholar

  • Sipahigil A, Jahnke KD, Rogers LJ, et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys Rev Lett. 2014;113(11):113602. PubMed Web of Science ®Google Scholar

  • Müller T, Hepp C, Pingault B, et al. Optical signatures of silicon-vacancy spins in diamond. Nat Commun. 2014;5:3328. PubMed Web of Science ®Google Scholar

  • Lagomarsino S, Flatae AM, Sciortino S, et al. Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-annealing. Diamond Relat Mater. 2018;84:196–203. Web of Science ®Google Scholar

  • Yang B, Yu B, Li HN, et al. Enhanced and switchable silicon-vacancy photoluminescence in air-annealed nanocrystalline diamond films. Carbon. 2020;156:242–252. Web of Science ®Google Scholar

  • Rogers LJ, Jahnke KD, Teraji T, et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun. 2014;5(1):5. Google Scholar

  • Li J, Ren Z, Zhang J, et al. Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films. Acta Phys Sin. 2023;72(3):038102. Google Scholar

  • Rong Y, Ma J, Chen L, et al. Excited-state lifetime measurement of silicon vacancy centers in diamond by single-photon frequency upconversion. Laser Phys. 2018;28(5):055401. Web of Science ®Google Scholar

  • Iwasaki T, Miyamoto Y, Taniguchi T, et al. Tin-vacancy quantum emitters in diamond. Phys Rev Lett. 2017;119:253601. PubMed Web of Science ®Google Scholar

  • Tchernij SD, Herzig T, Forneris J, et al. Single-photon-emitting optical centers in diamond fabricated upon Sn implantation. ACS Photonics. 2017;4(10):2580–2586. Web of Science ®Google Scholar

  • Ditalia Tchernij S, Lühmann T, Herzig T, et al. Single-photon emitters in lead-implanted single-crystal diamond. ACS Photonics. 2018;5(12):4864–4871. Web of Science ®Google Scholar

  • Bolshakov A, Ralchenko V, Sedov V, et al. Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane. Phys Status Solidi A. 2015;212(11):2525–2532. Web of Science ®Google Scholar

  • Yang B, Li H, Yu B, et al. Bright silicon vacancy centers in diamond/SiC composite films synthesized by a MPCVD method. Carbon. 2021;171:455–463. Web of Science ®Google Scholar

  • Yao X, Feng Y, Hu Z, et al. Dimerization of boron dopant in diamond (100) epitaxy induced by strong pair correlation on the surface. J Phys Condens Matter. 2013;25:045011. PubMed Web of Science ®Google Scholar

  • Stehlik S, Varga M, Stenclova P, et al. Ultrathin nanocrystalline diamond films with silicon vacancy color centers via seeding by 2 nm detonation nanodiamonds. ACS Appl Mater Interfaces. 2017;9(44):38842–38853. PubMed Web of Science ®Google Scholar

  • Guo Y, Feng Y, Zhang L. Revealing the growth mechanism of SiV centers in chemical vapor deposition of diamond. Diamond Relat Mater. 2016;61:91–96. Web of Science ®Google Scholar

  • Makino Y, Saito Y, Takehara H, et al. Effect of particle size on the optical properties of silicon‐vacancy centers in nanodiamonds fabricated by a detonation process. Phys Status Solidi A. 2022;219:2200342. Web of Science ®Google Scholar

  • Makino Y, Mahiko T, Liu M, et al. Straightforward synthesis of silicon vacancy (SiV) center-containing single-digit nanometer nanodiamonds via detonation process. Diamond Relat Mater. 2021;112:108248. Web of Science ®Google Scholar

  • Fujiwara M, Uchida G, Ohki I, et al. All-optical nanoscale thermometry based on silicon-vacancy centers in detonation nanodiamonds. Carbon. 2022;198:57–62. Web of Science ®Google Scholar

  • Hunold L, Lagomarsino S, Flatae AM, et al. Scalable creation of deep silicon‐vacancy color centers in diamond by ion implantation through a 1‐μm pinhole. Adv Quantum Tech. 2021;4:2100079. Google Scholar

  • Takashima H, Fukuda A, Shimazaki K, et al. Creation of silicon vacancy color centers with a narrow emission line in nanodiamonds by ion implantation. Opt Mater Express. 2021;11(7):1978. Web of Science ®Google Scholar

  • Li K, Zhou Y, Rasmita A, et al. Nonblinking emitters with nearly lifetime-limited linewidths in CVD nanodiamonds. Phys Rev Appl. 2016;6(2):7. Web of Science ®Google Scholar

  • Jantzen U, Kurz AB, Rudnicki DS, et al. Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths. New J Phys. 2016;18(7):073036. Google Scholar

  • Grudinkin SA, Feoktistov NA, Baranov MA, et al. Low-strain heteroepitaxial nanodiamonds:fabrication and photoluminescence of silicon-vacancy colour centres. Nanotechnology. 2016;27(39):395606. PubMed Web of Science ®Google Scholar

  • Malykhin S, Mindarava Y, Ismagilov R, et al. Formation of GeV, SiV, and NV color centers in single crystal diamond needles grown by chemical vapor deposition. Phys Status Solidi B. 2019;256:1800721. Google Scholar

  • Zaghrioui M, Agafonov VN, Davydov VA. Nitrogen and group-IV (Si, Ge) vacancy color centres in nano-diamonds:photoluminescence study at high temperature (25 °C–600 °C). Mater Res Express. 2020;7(1):015043. Web of Science ®Google Scholar

  • Pezzagna S, Rogalla D, Wildanger D, et al. Creation and nature of optical centres in diamond for single-photon emission—overview and critical remarks. New J Phys. 2011;13(3):035024. Google Scholar

  • Rong Y, Cheng K, Ju Z, Pan C, Ma Q, Liu S, Shen S, Wu B, Jia T, Wu E, Zeng H. Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation. Opt Lett.2019, 44(15):3793–3796. PubMed Web of Science ®Google Scholar

  • Jelezko F, Wrachtrup J. Single defect centres in diamond:a review. Phys Status Solidi A. 2006;203(13):3207–3225. Web of Science ®Google Scholar

  • Grudinkin SA, Feoktistov NA, Medvedev AV, et al. Luminescent isolated diamond particles with controllably embedded silicon-vacancy colour centres. J Phys D Appl Phys. 2012;45(6):062001. Web of Science ®Google Scholar

  • Singh S, Catledge SA. Silicon vacancy color center photoluminescence enhancement in nanodiamond particles by isolated substitutional nitrogen on {100} surfaces. J Appl Phys. 2013;113:044701. PubMed Web of Science ®Google Scholar

  • Tzeng YK, Zhang JL, Lu H, et al. Vertical-Substrate MPCVD epitaxial nanodiamond growth. Nano Lett. 2017;17(3):1489–1495. PubMed Web of Science ®Google Scholar

  • Neumann P, Kolesov R, Jacques V, et al. Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance. New J Phys. 2009;11(1):013017. Google Scholar

  • Vass D, Szenes A, Bánhelyi B, et al. Superradiant diamond color center arrays coupled to concave plasmonic nanoresonators. Opt Express. 2019;27(22):31176–31192. PubMed Web of Science ®Google Scholar

  • Lai S, Shen W, Zhang Z, et al. High-pressure high-temperature industrial preparation of micron-sized diamond single crystals with silicon-vacancy colour centres. Int J Refract Met Hard Mater. 2022;105:105806. Web of Science ®Google Scholar

  • Yang B, Li J, Guo L, et al. Fabrication of silicon-vacancy color centers in diamond films:tetramethylsilane as a new dopant source. CrystEngComm. 2018;20(8):1158–1167. Web of Science ®Google Scholar

  • Sedov V, Ralchenko V, Khomich AA, et al. Si-doped nano-and microcrystalline diamond films with controlled bright photoluminescence of silicon-vacancy color centers. Diamond Relat Mater. 2015;56:23–28. Web of Science ®Google Scholar

  • Mindarava Y, Blinder R, Laube C, et al. Efficient conversion of nitrogen to nitrogen-vacancy centers in diamond particles with high-temperature electron irradiation. Carbon. 2020;170:182–190. Web of Science ®Google Scholar

  • Lu S, Fan D, Chen C, et al. Ground-state structure of oxidized diamond (100) surface:an electronically nearly surface-free reconstruction. Carbon. 2020;159:9–15. Web of Science ®Google Scholar

  • Chen L, Chen C-K, Li X, et al. Effects of oxidation on silicon vacancy photoluminescence and microstructure of separated domain formed nanodiamond films. Acta Phys Sin. 2019;68(16):168101. Google Scholar

  • Krasnok AE, Maksymov IS, Denisyuk AI, et al. Optical nanoantennas. Phys-Usp. 2013;56(6):539–564. Web of Science ®Google Scholar

  • Fehler KG, Ovvyan AP, Antoniuk L, et al. Purcell-enhanced emission from individual SiV − center in nanodiamonds coupled to a Si3N4-Based, photonic crystal cavity. Nanophotonics. 2020;9(11):3655–3662. Web of Science ®Google Scholar

  • Selyukov AS, Danilkin MI, Eliseev SP, et al. Luminescence relaxation dynamics for planar and rolled-up CdSe nanocrystals in a photonic-crystal matrix. Quantum Electron. 2020;50(3):252–255. Web of Science ®Google Scholar

  • Xinke L, Shengli M, Jikun X, et al. Dissipative generation of steady-state entanglement of two separated SiV centers coupled to photonic crystal cavities. Quantum Inf Process. 2020;19(9):301. Web of Science ®Google Scholar

  • Benedikter J, Kaupp H, Hümmer T, et al. Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond. Phys Rev Appl. 2017;7:024031. Web of Science ®Google Scholar

  • Lee J, Leong V, Kalashnikov D, et al. Integrated single photon emitters. AVS Quantum Sci. 2020;2:031701. Google Scholar

  • Li S, Francaviglia L, Kohler DD, et al. Ag-diamond core-shell nanostructures incorporated with silicon-vacancy centers. ACS Mater Au. 2022;2(2):85–93. PubMedGoogle Scholar

  • Lu J, Yang B, Yu B, et al. Fabrication of diamond nanoneedle arrays containing high‐brightness silicon‐vacancy centers. Adv Opt Mater. 2021:2101427). Web of Science ®Google Scholar

  • Vass D, Szenes A, Bánhelyi B, et al. Plasmonically enhanced superradiance of broken-symmetry diamond color center arrays inside core-shell nanoresonators. Nanomaterials. 2022;12(3):352. Web of Science ®Google Scholar

  • Romshin AM, Gritsienko AV, Lega PV, et al. Effectively enhancing silicon-vacancy emission in a hybrid diamond-in-pit microstructure. Laser Phys Lett. 2022;20(1):015206. Web of Science ®Google Scholar

  • Fait J, Varga M, Hruška K, et al. Spectral tuning of diamond photonic crystal slabs by deposition of a thin layer with silicon vacancy centers. Nanophotonics. 2021;10(15):3895–3905. Web of Science ®Google Scholar

  • Ondič L, Varga M, Fait J, et al. Photonic crystal cavity-enhanced emission from silicon vacancy centers in polycrystalline diamond achieved without postfabrication fine-tuning. Nanoscale. 2020;12(24):13055–13063. PubMed Web of Science ®Google Scholar

  • Riedrich-Möller J, Kipfstuhl L, Hepp C, et al. One-and two-dimensional photonic crystal microcavities in single crystal diamond. Nature Nanotech. 2012;7(1):69–74. Web of Science ®Google Scholar

  • Fehler KG, Antoniuk L, Lettner N, et al. Hybrid quantum photonics based on artificial atoms placed inside one hole of a photonic crystal cavity. ACS Photonics. 2021;8(9):2635–2641. Web of Science ®Google Scholar

  • Lobaev MA, Gorbachev AM, Radishev DB, et al. Growth conditions and substrate misorientation angle dependences of silicon incorporation in chemical vapor deposition diamond. Phys Status Solidi A. 2023;220:2200654. Web of Science ®Google Scholar

  • Shershulin VA, Sedov VS, Ermakova A, et al. Size-dependent luminescence of color centers in composite nanodiamonds. Phys Status Solidi A. 2015;212(11):2600–2605. Web of Science ®Google Scholar

  • Bolshedvorskii SV, Zeleneev AI, Vorobyov VV, et al. Single silicon vacancy centers in 10 nm diamonds for quantum information applications. ACS Appl Nano Mater. 2019;2(8):4765–4772. Web of Science ®Google Scholar

  • Orwa JO, Aharonovich I, Jelezko F, et al. Nickel related optical centres in diamond created by ion implantation. J Appl Phys. 2010;107:093512. Web of Science ®Google Scholar

  • Lagomarsino S, Flatae AM, Kambalathmana H, et al. Creation of silicon-vacancy color centers in diamond by ion implantation. Front Phys. 2021;8:8. Web of Science ®Google Scholar

  • Shiryaev AA, Hinks JA, Marks NA, et al. Ion implantation in nanodiamonds:size effect and energy dependence. Sci Rep. 2018;8:5099. PubMed Web of Science ®Google Scholar

  • Yang C, Mi Z, Jin H, et al. Large-scale fabrication of surface SiV − centers in a flexible diamond membrane. Carbon. 2023;203:842–846. Web of Science ®Google Scholar

  • Tamura S, Koike G, Komatsubara A, et al. Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation. Appl Phys Express. 2014;7(11):115201. Web of Science ®Google Scholar

  • Berhane AM, Choi S, Kato H, et al. Electrical excitation of silicon-vacancy centers in single crystal diamond. Appl Phys Lett. 2015;106:171102. Web of Science ®Google Scholar

  • Xu X, Martin ZO, Titze M, et al. Fabrication of single color centers in sub-50 nm nanodiamonds using ion implantation. Nanophotonics. 2023;12(3):485–494. Web of Science ®Google Scholar

  • Tisler J, Balasubramanian G, Naydenov B, et al. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano. 2009;3(7):1959–1965. PubMed Web of Science ®Google Scholar

  • Vlasov I, Shiryaev AA, Rendler T, et al. Molecular-sized fluorescent nanodiamonds. Nature Nanotech. 2014;9(1):54–58. PubMed Web of Science ®Google Scholar

  • Wein S, Lauk N, Ghobadi R, et al. Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities. Phys Rev B. 2018;97:205418. Web of Science ®Google Scholar

  • Bogdanov SI, Boltasseva A, Shalaev VM. Overcoming quantum decoherence with plasmonics. Science. 2019;364(6440):532–533. PubMed Web of Science ®Google Scholar

  • Rose BH, Huang D, Zhang Zh, Stevenson P, et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science. 2018;361(6397):60–63. PubMed Web of Science ®Google Scholar

  • Green BL, Mottishaw S, Breeze BG, et al. Neutral silicon-vacancy center in diamond:spin polarization and lifetimes. Phys Rev Lett. 2017;119:096402. PubMed Web of Science ®Google Scholar

  • Bray K, Fedyanin DY, Khramtsov IA, et al. Electrical excitation and charge-state conversion of silicon vacancy color centers in single-crystal diamond membranes. Appl Phys Lett. 2020;116:101103. Web of Science ®Google Scholar

  • Lobaev MA, Gorbachev AM, Radishev DB, et al. Investigation of silicon-vacancy center formation during the CVD diamond growth of thin and delta doped layers. J Mater Chem C. 2021;9(29):9229–9235. Web of Science ®Google Scholar

  • Sukachev DD, Sipahigil A, Nguyen CT, et al. Silicon-vacancy spin qubit in diamond:a quantum memory exceeding 10 ms with single-shot state readout. Phys Rev Lett. 2017;119:223602. PubMed Web of Science ®Google Scholar

  • Smallwood CL, Ulbricht R, Day MW, et al. Hidden silicon-vacancy centers in diamond. Phys Rev Lett. 2021;126:213601. PubMed Web of Science ®Google Scholar

  • Dhomkar S, Zangara PR, Henshaw J, et al. On-demand generation of neutral and negatively charged silicon-vacancy centers in diamond. Phys Rev Lett. 2018;120:117401. PubMed Web of Science ®Google Scholar

  • Sektarov E, Sedov V, Ralchenko V, et al. X‐rays in diamond photonics:a new way to control charge states of color centers. Phys Status Solidi A. 2023;220:2200283. Web of Science ®Google Scholar

  • Guo X, Yang B, Lu J, et al. Electrical tailoring of the photoluminescence of silicon-vacancy centers in diamond/silicon heterojunctions. J Mater Chem C. 2022;10(24):9334–9343. PubMed Web of Science ®Google Scholar

  • Lobaev MA, Radishev DB, Vikharev AL, et al. SiV centers electroluminescence in diamond merged diode. Phys Status Solidi Rapid Res Lett. 2023;17:2200432. Web of Science ®Google Scholar

  • Liu K, Zhang S, Liu B, et al. Impact of positive space charge depletion layer on negatively charged and neutral centers in gold–diamond Schottky junctions. Carbon. 2019;153:381–388. Web of Science ®Google Scholar

0
Favorite
Share

Related articles