Skip to main content
Research Article

Turning the optical properties of microcrystalline diamond films by boron ion implantation and annealing

Dan Dai ,
Jiale Wang ,
Chengke Chen ,
Haitao Ye ,
Nianhua Peng ,
Jinping Pan ,
Xiaojun Hu
Volume 4, Issue 1 (2024)
DOI: 10.1080/26941112.2024.2330460

Keywords

Microcrystalline diamond; boron ion implanted; annealing; refractive index

References

  • Liakat S, Bors KA, Xu L, et al. Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomed Opt Express. 2014;5(7):1–9. Web of Science ®Google Scholar

  • Lu R, Li WW, Katzir A, et al. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst. 2015;140(3):765–770. PubMed Web of Science ®Google Scholar

  • Haas J, Mizaikoff B. Advances in mid-infrared spectroscopy for chemical analysis. Ann Rev Anal Chem. 2016;9:45–68. Google Scholar

  • Mashanovich GZ, Mitchell CJ, Penades JS, et al. Germanium mid-infrared photonic devices. J Lightwave Technol. 2017;35(4):624–630. Web of Science ®Google Scholar

  • Lin HT, Luo ZQ, Gu T, et al. Mid-infrared integrated photonics on silicon:a perspective. Nanophotonics. 2017;7(2):393–420. Web of Science ®Google Scholar

  • Sun LF, Tang JY. A new texturing technique of monocrystalline silicon surface with sodium hypochlorite. Appl Surf Sci. 2009;255(22):9301–9304. Web of Science ®Google Scholar

  • Baluchová S, Daňhel A, Dejmková H, et al. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – a review. Anal Chim Acta. 2019;1077:30–66. PubMed Web of Science ®Google Scholar

  • Pecková K, Musilová J, Barek J. Boron-doped diamond film electrodes-new tool for voltammetric determination of organic substances. Crit Rev Anal Chem. 2009;39(3):148–172. Web of Science ®Google Scholar

  • Rath P, Khasminskaya S, Nebel C, et al. Diamond-integrated optomechanical circuits. Nat Commun. 2013;4(1):9. Google Scholar

  • Rath P, Ummethala S, Diewald S, et al. Diamond electro-optomechanical resonators integrated in nanophotonic circuits. Appl Phys Lett. 2014;105(25):4. Web of Science ®Google Scholar

  • Rath P, Ummethala S, Nebel C, et al. Diamond as a material for monolithically integrated optical and optomechanical devices. Physica Status Solidi (A). 2015;212(11):2385–2399. Web of Science ®Google Scholar

  • Ovvyan AP, Gruhler N, Ferrari S, et al. Cascaded Mach-Zehnder interferometer tunable filters. J Opt. 2016;18(6):064011. Web of Science ®Google Scholar

  • Sieger M, Balluff F, Wang XF, et al. On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer. Anal Chem. 2013;85(6):3050–3052. PubMed Web of Science ®Google Scholar

  • Maida O, Tabuchi T, Ito T. Improvement on p-type CVD diamond semiconducting properties by fabricating thin heavily-boron-doped multi-layer clusters isolated each other in unintentionally boron-doped diamond layer. J Cryst Growth. 2017;480:51–55. Web of Science ®Google Scholar

  • Jiang MY, Yu H, Li X, et al. Thermal oxidation induced high electrochemical activity of boron-doped nanocrystalline diamond electrodes. Electrochim Acta. 2017;258:61–70. Web of Science ®Google Scholar

  • Sobaszek M, Skowroński Ł, Bogdanowicz R, et al. Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes. Opt Mater. 2015;42:24–34. Web of Science ®Google Scholar

  • Battiato A, Bosia F, Ferrari S, et al. Spectroscopic measurement of the refractive index of ion-implanted diamond. Opt Lett. 2012;37(4):671–673. PubMed Web of Science ®Google Scholar

  • Draganski MA, Finkman E, Gibson BC, et al. Tailoring the optical constants of diamond by ion implantation. Opt Mater Express. 2012;2(5):644–649. Web of Science ®Google Scholar

  • Remes Z, Babchenko O, Varga M, et al. Preparation and optical properties of nanocrystalline diamond coatings for infrared planar waveguides. Thin Solid Films. 2016;618:130–133. Web of Science ®Google Scholar

  • Zhu J, Han J, Han X, et al. Optical properties of amorphous diamond films evaluated by non-destructive spectroscopic ellipsometry. Opt Mater. 2006;28(5):473–479. Web of Science ®Google Scholar

  • Abdel-Wahab F, Ashraf IM, Montaser AA. Spectroscopic ellipsometry study of TlGaSeS layered crystal. Optik. 2019;178:813–820. Web of Science ®Google Scholar

  • Stchakovsky M, Battie Y, Naciri AE. An original method to determine complex refractive index of liquids by spectroscopic ellipsometry and illustrated applications. Appl Surf Sci. 2017;421:802–806. Web of Science ®Google Scholar

  • Tiwald TE, Thompson DW, Woollam JA, et al. Application of IR variable angle spectroscopic ellipsometry to the determination of free carrier concentration depth profiles. Thin Solid Films. 1998;313-314:661–666. Web of Science ®Google Scholar

  • Gangwar P, Singh S, Khare N. Study of optical properties of graphene oxide and its derivatives using spectroscopic ellipsometry. Appl Phys A. 2018;124(9):620. Web of Science ®Google Scholar

  • Giri PK, Tripurasundari S, Raghavan G, et al. Crystalline to amorphous transition and band structure evolution in ion-damaged silicon studied by spectroscopic ellipsometry. J Appl Phys. 2001;90(2):659–669. Web of Science ®Google Scholar

  • Shen YY, Zhang XD, Zhang DC, et al. (101)-Oriented ZnO nanoparticles fabricated in Si (100) by Zn ion implantation and thermal oxidation. Mater Lett. 2011;65(21–22):3323–3326. Web of Science ®Google Scholar

  • Aghgonbad MM, Sedghi H. Influence of annealing temperature on optical properties of zinc oxide thin films analyzed by spectroscopic ellipsometry method. Chin J Phys. 2018;56(5):2129–2138. Web of Science ®Google Scholar

  • Vlasov II, Ralchenko VG, Goovaerts E, et al. Bulk and surface-enhanced Raman spectroscopy of nitrogen-doped ultrananocrystalline diamond films. Physica Status Solidi (a). 2006;203(12):3028–3035. Web of Science ®Google Scholar

  • Mei YS, Chen CK, Fan D, et al. Enhanced SiV photoluminescence by oxidation-induced nano-structures on diamond particle surfaces. Nanoscale. 2019;11(2):656–662. PubMed Web of Science ®Google Scholar

  • Knittel P, Stach R, Yoshikawa T, et al. Characterisation of thin boron-doped diamond films using Raman spectroscopy and chemometrics. Anal Methods. 2019;11(5):582–586. Web of Science ®Google Scholar

  • Xu H, Liu JJ, Ye HT, et al. Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films. Chin Phys B. 2018;27(9):8. Web of Science ®Google Scholar

  • Mortet V, Taylor A, Vlčková Živcová Z, et al. Analysis of heavily boron-doped diamond Raman spectrum. Diamond Relat Mater. 2018;88:163–166. Web of Science ®Google Scholar

  • Xu H, Chen C, Fan D, et al. Oxygen ion implanted grains dominantly contributed electron field emission of nanocrystalline diamond films. Carbon. 2019;145:187–194. Web of Science ®Google Scholar

  • Hu XJ, Chen CK, Lu SH. High mobility n-type conductive ultrananocrystalline diamond and graphene nanoribbon hybridized carbon films. Carbon. 2016;98:671–680. Web of Science ®Google Scholar

  • Ferrari AC, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans R Soc A-Math Phys Eng Sci. 2004;362(1824):2477–2512. PubMed Web of Science ®Google Scholar

  • Liu FB, Wang JD, Chen DR, et al. Electronic properties of hydrogen-and oxygen-terminated diamond surfaces exposed to the air. Chin Phys B. 2009;18(5):2041–2047. Web of Science ®Google Scholar

0
Favorite
Share

Related articles