Skip to main content
Research Article

Evolutionary features of subsurface defects of single crystal diamond after dynamic friction polishing

Sheng Ye ,
Yuting Zheng ,
Shangman Zhao ,
Jinlong Liu ,
Liangxian Chen ,
Haitao Ye ,
Xiaotong Zhang ,
Xiaoping Ouyang ,
Chengming Li ,
Junjun Wei
+ 2 authors fewer
Volume 4, Issue 1 (2024)
DOI: 10.1080/26941112.2024.2316147

Keywords

Single crystal diamond; dynamic friction polishing; crystal structure; defects

References

  • Zheng Y, Ye H, Liu J, et al. Surface morphology evolution of a polycrystalline diamond by inductively coupled plasma reactive ion etching (ICP-RIE). Mater Lett. 2019;253:1–5.  Google Scholar
  • Crawford KG, Maini I, Macdonald DA, et al. Surface transfer doping of diamond: a review. Prog Surf Sci. 2021;96(1):100613.  Web of Science ®Google Scholar
  • Perez G, MARéCHAL A, Chicot G, et al. Diamond semiconductor performances in power electronics applications. Diamond Relat Mater. 2020;110:108154.  Web of Science ®Google Scholar
  • Tsukioka K. Energy distributions and scattering mechanisms of carriers in diamond. Diamond Relat Mater. 2009;18(5-8):792–795.  Google Scholar
  • Wade T, Geis MW, Fedynyshyn TH, et al. Effect of surface roughness and H–termination chemistry on diamond’s semiconducting surface conductance. Diamond Relat Mater. 2017;76:79–85.  Web of Science ®Google Scholar
  • Yu X, Li J, Xu H, et al. Influence of diamond matrix morphology on ZnO surface morphology and preferred orientation. Mater Today Commun. 2023;37:107462.  Google Scholar
  • Long C, Yang LI. Influence of surface roughness on ­surface acoustic waves. Proceedings of the 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), p. 16–19. 2021.  Google Scholar
  • Iriarte GF, RODRíGUEZ JG, Calle F. Synthesis of c-axis oriented AlN thin films on different substrates: a review. Mater Res Bull. 2010;45(9):1039–1045.  Google Scholar
  • Liang J, Masuya S, Kim S, et al. Stability of diamond/Si bonding interface during device fabrication process. Appl Phys Express. 2019;12(1):016501.  Web of Science ®Google Scholar
  • Liang J, Masuya S, Kasu M, et al. Realization of direct bonding of single crystal diamond and Si substrates. Appl Phys Lett. 2017;110(11):111603.  Web of Science ®Google Scholar
  • Doronin MA, Polyakov SN, Kravchuk KS, et al. Limits of single crystal diamond surface mechanical polishing. Diamond Relat Mater. 2018;87:149–155.  Google Scholar
  • Wen H, Lu J, Xu S, et al. Mechanical chemical polishing of large-size single-crystal diamond substrates with a sol-gel polishing tool. J Manuf Processes. 2022;80:210–219.  Google Scholar
  • Zheng Y, Ye H, Thornton R, et al. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing. Diamond Relat Mater. 2020;101:107600.  Web of Science ®Google Scholar
  • Li Z, Jiang F, Jiang Z, et al. Energy beam-based direct and assisted polishing techniques for diamond: a review. Int J Extreme Manuf. 2024;6(1):012004.  Google Scholar
  • Yamamura K, Emori K, Sun R, et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing. CIRP Ann. 2018;67(1):353–356.  Web of Science ®Google Scholar
  • Kubota A, Nagae S, Motoyama S. High-precision mechanical polishing method for diamond substrate using micron-sized diamond abrasive grains. Diamond Relat Mater. 2020;101:107644.  Web of Science ®Google Scholar
  • Lu J, Xiao P, Tong R, et al. Precision polishing of single crystal diamond (111) substrates using a Sol-Gel (SG) polishing pad. IEEE Trans. Semicond Manufact. 2019;32(3):341–345.  Web of Science ®Google Scholar
  • Schuelke T, Grotjohn TA. Diamond polishing. Diam Relat Mater. 2013;32:17–26.  Web of Science ®Google Scholar
  • Harris DC. Materials for infrared windows and domes: properties and performance. Bellingham: SPIE Press; 1999.  Google Scholar
  • Tatsumi N, Harano K, Ito T, et al. Polishing mechanism and surface damage analysis of type IIa single crystal diamond processed by mechanical and chemical polishing methods. Diamond Relat Mater. 2016;63:80–85.  Google Scholar
  • Haisma J, VAN DER Kruis F J HM, Spierings B A CM, et al. Damage-free tribochemical polishing of diamond at room temperature: a finishing technology. Precis Eng. 1992;14(1):20–27.  Google Scholar
  • Liu N, Yamada H, Yoshitaka N, et al. Comparison of surface and subsurface damage of mosaic single-crystal diamond substrate processed by mechanical and plasma-assisted polishing. Diamond Relat Mater. 2021;119:108555.  Google Scholar
  • Volpe P-N, Muret P, Omnes F, et al. Defect analysis and excitons diffusion in undoped homoepitaxial diamond films after polishing and oxygen plasma etching. Diamond Relat Mater. 2009;18(10):1205–1210.  Web of Science ®Google Scholar
  • Chen Y, Zhang LC. Polishing of polycrystalline diamond by the technique of dynamic friction, part 4: establishing the polishing map. Int J Mach Tools Manuf. 2009;49(3-4):309–314.  Web of Science ®Google Scholar
  • Andrea Carlo F, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans A Math Phys Eng Sci. 2004;362(1824):2477–2512.  PubMedGoogle Scholar
  • Luo H, Ajmal KM, Liu W, et al. Atomic-scale and damage-free polishing of single crystal diamond enhanced by atmospheric pressure inductively coupled plasma. Carbon. 2021;182:175–184.  Google Scholar
  • Yuan S, Guo X, Zhang S, et al. Influence mechanism of defects on the subsurface damage and structural evolution of diamond in CMP process. Appl Surf Sci. 2021;566:150638.  Google Scholar
  • Chen Y, Zhang LC, Arsecularatne JA. Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: material removal mechanism. Int J Mach Tools Manuf. 2007;47(10):1615–1624.  Web of Science ®Google Scholar
  • Yuan S, Guo X, Mao Q, et al. Effects of pressure and velocity on the interface friction behavior of diamond utilizing ReaxFF simulations. Int J Mech Sci. 2021;191:106096.  Google Scholar
198
Favorite
Share

Related articles