Skip to main content
Research Article

Electrochemical reduction of CO2 using boron-doped diamond electrodes: the influence of deposition times

Huiqiang Liu ,
Xiangyan Cheng ,
Jiajun You ,
Baohua Zhang ,
Bing Wang ,
Lin Chen ,
Ying Xiong
Volume 4, Issue 1 (2024)
DOI: 10.1080/26941112.2023.2301445

Keywords

Boron-doped diamond; CO2 reduction; B doping state; crystallinity; grain boundary

References

  • Dattila F, Seemakurthi RR, Zhou Y, et al. Modeling operando electrochemical CO2 reduction. Chem Rev. 2022;122(12):1–9.  PubMed Web of Science ®Google Scholar
  • Watanabe T, Pfeil-Gardiner O, Kahnt J, et al. Three-megadalton complex of methanogenic electron-­bifurcating and CO2-fixing enzymes. Science. 2021;373(6559):1151–1156.  PubMed Web of Science ®Google Scholar
  • Navarro-Jaén S, Virginie M, Bonin J, et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat Rev Chem. 2021;5(8):564–579.  PubMed Web of Science ®Google Scholar
  • Li L, Li X, Sun Y, et al. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem Soc Rev. 2022;51(4):1234–1252.  PubMed Web of Science ®Google Scholar
  • Xue Y, Feng X, Roberts SC, et al. Diamond and carbon nanostructures for biomedical applications. Funct Diamond. 2021;1(1):221–242.  Google Scholar
  • Natsui K, Iwakawa H, Ikemiya N, et al. Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes. Angew Chem Int Ed. 2018;57(10):2639–2643.  PubMed Web of Science ®Google Scholar
  • Ganiyu SO, Dos SV, Martínez-Huitle CA, et al. Opportunities and challenges of thin-film boron-doped diamond electrochemistry for valuable resources recovery from waste: organic, inorganic, and volatile product electrosynthesis. Curr Opin Electrochem. 2022;32:100903.  Web of Science ®Google Scholar
  • Luo D, Ma D, Liu S, et al. Electrochemical reduction of CO2 on fluorine-modified boron-doped diamond electrode. Diam Relat Mater. 2022;121:108753.  Web of Science ®Google Scholar
  • Xu J, Natsui K, Naoi S, et al. Effect of doping level on the electrochemical reduction of CO2 on boron-doped diamond electrodes. Diam Relat Mater. 2018;86:167–172.  Web of Science ®Google Scholar
  • Chen Y, Gao X, Liu G, et al. Correlation of the role of boron concentration on the microstructure and electrochemical properties of diamond electrodes. Funct Diamond. 2021;1(1):197–204.  Google Scholar
  • Jiwanti PK, Einaga Y. Electrochemical reduction of CO2 using palladium modified boron-doped diamond electrodes: enhancing the production of CO. Phys Chem Chem Phys. 2019;21(28):15297–15301.  PubMed Web of Science ®Google Scholar
  • Verlato E, Barison S, Einaga Y, et al. CO2 reduction to formic acid at low overpotential on BDD electrodes modified with nanostructured CeO2. J Mater Chem A. 2019;7(30):17896–17905.  Web of Science ®Google Scholar
  • Tomisaki M, Kasahara S, Natsui K, et al. Switchable product selectivity in the electrochemical reduction of carbon dioxide using boron-doped diamond electrodes. J Am Chem Soc. 2019;141(18):7414–7420.  PubMed Web of Science ®Google Scholar
  • Xu J, Einaga Y. Effect of sp2 species in a boron-doped diamond electrode on the electrochemical reduction of CO2. Electrochem Commun. 2020;115:106731.  Web of Science ®Google Scholar
  • Ivandini TA, Watanabe T, Matsui T, et al. Influence of surface orientation on electrochemical properties of boron-doped diamond. J Phys Chem C. 2019;123(9):5336–5344.  Web of Science ®Google Scholar
  • Souza FL, Lopes OF, Santos EV, et al. Promoting CO2 electroreduction on boron-doped diamond electrodes: challenges and trends. Curr Opin Electrochem. 2022;32:100890.  Web of Science ®Google Scholar
  • Umezawa H, Takenouchi T, Kobayashi K, et al. Growth of heavily boron-doped polycrystalline superconducting damond. New Diamond Front Carbon Technol. 2007;17(1):1–9.  Google Scholar
  • Yamada H, Shimaoka T. Study of horizontal and vertical uniformity of B-doped layer on mosaic single crystal diamond wafers by using hot-filament chemical vapor deposition. Funct Diamond. 2022;2(1):46–52.  Google Scholar
  • Zhu R, Liu F, Deng Z, et al. Inconsistency of BDD reactivity assessed by ferri/ferro-cyanide redox system and electrocatalytic degradation capability. Funct Diamond. 2022;2(1):71–79.  Google Scholar
  • Xu J, Yokota Y, Wong RA, et al. Unusual electrochemical properties of low-doped boron-doped diamond electrodes containing sp2 carbon. J Am Chem Soc. 2020;142(5):2310–2316.  PubMed Web of Science ®Google Scholar
  • Einaga Y, Foord JS, Swain GM. Diamond electrodes: diversity and maturity. MRS Bull. 2014;39(6):525–532.  Web of Science ®Google Scholar
  • Peng Z, Xu J, Kurihara K, et al. Electrochemical CO2 reduction on Sub-microcrystalline boron-doped diamond electrodes. Diam Relat Mater. 2021;120:108608.  Web of Science ®Google Scholar
  • Zeng X, Zhao Y, Chen N, et al. Analysis on electrochemical CO2 reduction by diamond doping technology. J Electrochem En Conv Stor. 2023;20:020801.  Web of Science ®Google Scholar
  • Watanabe T, Yoshioka S, Yamamoto T, et al. The local structure in heavily boron-doped diamond and the effect this has on its electrochemical properties. Carbon. 2018;137:333–342.  Web of Science ®Google Scholar
  • Wilson NR, Clewes SL, Newton ME, et al. Impact of grain-dependent boron uptake on the electrochemical and electrical properties of polycrystalline boron doped diamond electrodes. J Phys Chem B. 2006;110(11):5639–5646.  PubMed Web of Science ®Google Scholar
  • May PW, Ludlow WJ, Hannaway M, et al. Boron doping of microcrystalline and nanocrystalline diamond films: where is the boron going? MRS Proc. 2007;1039(1):1703.  Google Scholar
  • Manciu FS, Manciu M, Durrer WG, et al. A drude model analysis of conductivity and free carriers in boron-doped diamond films and investigations of their internal stress and strain. J Mater Sci. 2014;49(16):5782–5789.  PubMed Web of Science ®Google Scholar
  • Pleskov YV, Krotova MD, Evstefeeva YE, et al. Synthetic semiconductor diamond electrodes: comparison of electrochemical impedance at the growth and nucleation surfaces of a coarse-grained polycrystalline film. Russ J Electrochem. 2001;37(11):1123–1127.  Web of Science ®Google Scholar
  • Lu C, Tian SB, Gu CZ, et al. Grain boundary effect on the superconducting transition of microcrystalline boron-doped diamond films. Diam Relat Mater. 2011;20(2):217–220.  Web of Science ®Google Scholar
  • Pleskov YV, Evstefeeva YE, Krotova MD, et al. Synthetic semiconductor diamond electrodes: the comparative study of the electrochemical behaviour of polycrystalline and single crystal boron-doped films. J Electroanal Chem. 1998;455(1-2):139–146.  Web of Science ®Google Scholar
  • Pleskov YV. New corrosion-resistant electrodes: synthetic diamond and diamond-based materials. The semiconductor and structure aspects-a review. Prot Met. 2006;42(2):103–118.  Google Scholar
  • Yang H, Ma Y, Dai Y. Progress of structural and electronic properties of diamond: a mini review. Funct Diamond. 2022;1(1):150–159.  Google Scholar
  • Szunerits S, Mermoux M, Crisci A, et al. Raman imaging and Kelvin probe microscopy for the examination of the heterogeneity of doping in polycrystalline boron-doped diamond electrodes. J Phys Chem B. 2006;110(47):23888–23897.  PubMed Web of Science ®Google Scholar
  • Ullah M, Ahmed E, Hussain F, et al. Electrical conductivity enhancement by boron-doping in diamond using first principle calculations. Appl Surf Sci. 2015;334:40–44.  Web of Science ®Google Scholar
  • Wächter N, Munson C, Jarošová R, et al. Structure, electronic properties, and electrochemical behavior of a boron-doped diamond/quartz optically transparent electrode. ACS Appl Mater Interfaces. 2016;8(42):28325–28337.  PubMed Web of Science ®Google Scholar
  • May PW, Ludlow WJ, Hannaway M, et al. Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films. Diam Relat Mater. 2008;17(2):105–117.  Web of Science ®Google Scholar
  • Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications, New York: Wiley, 2001, 2nd ed. Russ J Electrochem. 2002;38:1364–1365.  Google Scholar
  • Long H, Hu H, Wen K, et al. Thickness effects on boron doping and electrochemical properties of boron-doped diamond film. Molecules. 2023;28(6):2829.  PubMed Web of Science ®Google Scholar
220
Favorite
Share

Related articles