Skip to main content
Research Article

Preferential orientation of diamond formation on TaC: Diamond(111)//TaC(111)

Shaohua Lu ,
Xiongtao Zhang ,
Yuhao Zheng ,
Meiyan Jiang ,
Chengke Chen ,
Xiaojun Hu
Volume 4, Issue 1 (2024)
DOI: 10.1080/26941112.2023.2300764

Keywords

Diamond film; HFCVD; TaC; Diamond(111)/TaC(111) interface; Graphite(002)/TaC(111) interface

References

  • Li DM, Hernberg R, Mäntylä T. Catalytic dissociation of hydrogen on a tantalum carbide filament in the HFCVD of diamond. Diamond Relat Mater. 1998;7(11–12):1–9.  Web of Science ®Google Scholar
  • Lee ST, Lin ZD, Jiang X. CVD diamond films: nucleation and growth. Mater Sci Eng R-Rep. 1999;25(4):123–154.  Web of Science ®Google Scholar
  • Schwander M, Partes K. A review of diamond synthesis by CVD processes. Diamond Relat Mater. 2011;20(9):1287–1301.  Web of Science ®Google Scholar
  • Ohmagari S. Single-crystal diamond growth by hot-filament CVD: a recent advances for doping, growth rate and defect controls. Funct Diamond. 2023;3(1):2259941.  Google Scholar
  • Matsumoto S, Sato Y, Tsutsumi M, et al. Growth of diamond particles from methane-hydrogen gas. J Mater Sci. 1982;17(11):3106–3112.  Web of Science ®Google Scholar
  • Song BK, Kim HY, Kim KS, et al. Unusual dependence of the diamond growth rate on the methane concentration in the hot filament chemical vapor deposition process. Materials. 2021;14(2):426.  PubMed Web of Science ®Google Scholar
  • Takamori Y, Nagai M, Tabakoya T, et al. Insight into temperature impact of ta filaments on high-growth-rate diamond (100) films by hot-filament chemical vapor deposition. Diamond Relat Mater. 2021;118:108515.  Web of Science ®Google Scholar
  • Bucknum MJ, Pickard CJ, Stamatin I, et al. On the structure of i-carbon. J Theor Comput Chem. 2006;05(02):175–185.  Google Scholar
  • Wen B, Zhao JJ, Li TJ. Synthesis and crystal structure of n-diamond. Int Mater Rev. 2007;52(3):131–151.  Web of Science ®Google Scholar
  • Park CG, Yang JW, Hwang NM. TEM observations of metastable nanocarbon allotropes in the initial stage of diamond growth at 300 degrees C during diamond hot filament CVD. Electron Mater Lett. 2023;19(3):316–324.  Web of Science ®Google Scholar
  • Zhu ZG, Jiang CQ, Chen CK, et al. Ordinary-pressure phase transition from graphite to diamond induced by ta atoms. Carbon. 2023;211:118098.  Web of Science ®Google Scholar
  • Zhang CZ, Niakan H, Yang L, et al. Study of diamond nucleation and growth on Ti6Al4V with tungsten interlayer. Surface Coat Technol. 2013;237:248–254.  Web of Science ®Google Scholar
  • Aoki Y, Nakamuta Y, Sugawara Y. Formation of tetrapod-like crystals of diamond formed by hot- filament chemical-vapor-deposition-effects of preformation of tungsten carbide on the substrate. J Cryst Growth. 1995;147(1-2):77–82.  Web of Science ®Google Scholar
  • McNamara KM, Gleason KK. Comparison of tantalum and rhenium filaments in diamond CVD using selective C-13 labeling. J Electrochem Soc. 1993;140(2):L22–L24.  Web of Science ®Google Scholar
  • Jiang MY, Chen CK, Wang P, et al. Diamond formation mechanism in chemical vapor deposition. Proc Natl Acad Sci USA. 2022;119(16):7.  Web of Science ®Google Scholar
  • Li H, Yu QN, Yang B, et al. Electrochemical treatment of artificial humidity condensate by large-scale boron doped diamond electrode. Sep Purif Technol. 2014;138:13–20.  Web of Science ®Google Scholar
  • Ullah M, Rana AM, Ahmad E, et al. Phenomenological effects of tantalum incorporation into diamond films: experimental and first principle studies. Appl Surf Sci. 2016;380:83–90.  Web of Science ®Google Scholar
  • Soto G, Silva G, Contreras O. A study on the flexibility of the hot-filament configuration and its implementation for diamond, boron carbide and ternary alloys deposition. Surf Coat Technol. 2006;201(6):2733–2740.  Web of Science ®Google Scholar
  • Wang SG, Zhang Q, Yoon SF, et al. CVD diamond nucleation enhanced by ultrasonic pretreatment using diamond and mixture of diamond and TaC powders. Diamond Relat Mater. 2002;11(9):1683–1689.  Web of Science ®Google Scholar
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169–11186.  PubMed Web of Science ®Google Scholar
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868.  PubMed Web of Science ®Google Scholar
  • Stampfl C, Mannstadt W, Asahi R, et al. Electronic structure and physical properties of early transition metal mononitrides: density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Phys Rev B. 2001;63(15):155106.  Web of Science ®Google Scholar
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188–5192.  Web of Science ®Google Scholar
  • Rapcewicz K, Chen B, Yakobson B, et al. Consistent methodology for calculating surface and interface energies. Phys Rev B. 1998;57(12):7281–7291.  Web of Science ®Google Scholar
  • Liu HM, Dandy DS. Studies on nucleation process in diamond CVD – an overview of recent developments. Diamond Relat Mater. 1995;4(10):1173–1188.  Web of Science ®Google Scholar
  • Mandal S. Nucleation of diamond films on heterogeneous substrates: a review. RSC Adv. 2021;11(17):10159–10182.  PubMed Web of Science ®Google Scholar
  • Qi Y, Hector LG. Adhesion and adhesive transfer at aluminum/diamond interfaces: a first-principles study. Phys Rev B. 2004;69(23):13.  Web of Science ®Google Scholar
  • Bramfitt BL. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall Trans. 1970;1(7):1987–1995.  Google Scholar
  • Rose JH, Ferrante J, Smith JR. Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett. 1981;47(9):675–678.  Web of Science ®Google Scholar
  • Siegel DJ, Hector LG, Adams JB. First-principles study of metal-carbide/nitride adhesion: al/VC vs. Al/VN. Acta Mater. 2002;50(3):619–631.  Web of Science ®Google Scholar