Skip to main content
Research Article

Effect of substrate roughness on the nucleation and growth behaviour of microwave plasma enhanced CVD diamond films – a case study

Awadesh Kumar Mallik ,
Rozita Rouzbahani ,
Fernando Lloret ,
Rani Mary Joy ,
Ken Haenen
Volume 3, Issue 1 (2023)
DOI: 10.1080/26941112.2023.2295346

Keywords

CVD; diamond; silicon; roughness; nucleation; growth

References

  • Gunn DJ. Effect of surface roughness on the nucleation and growth of calcium sulphate on metal surfaces. J Cryst Growth. 1980;50(2):533–537.  [Web of Science ®], [Google Scholar]
  • Campbell JM, Meldrum FC, Christenson HK. Is ice nucleation from supercooled water insensitive to surface roughness? J Phys Chem C. 2015;119(2):1164–1169.  [Web of Science ®], [Google Scholar]
  • Wind RW, Fabreguette FH, Sechrist ZA, et al. Nucleation period, surface roughness, and oscillations in mass gain per cycle during W atomic layer deposition on Al2O3. J Appl Phys. 2009;105(7):074309.  [Web of Science ®], [Google Scholar]
  • Chan CY, Eyhusen S, Meng XM, et al. The effect of substrate surface roughness on the nucleation of cubic boron nitride films. Diamond Relat Mater. 2006;15(1):55–60.  [Web of Science ®], [Google Scholar]
  • Ying Z, et al. Effect of substrate micro-morphology on heterogeneous nucleation. China Found. 2012;9:234–238.  [Web of Science ®], [Google Scholar]
  • Tien LC, Chen YJ. Effect of surface roughness on nucleation and growth of vanadium pentoxide nanowires. Appl Surf Sci. 2012;258(8):3584–3588.  [Web of Science ®], [Google Scholar]
  • Holbrough JL, Campbell JM, Meldrum FC, et al. Topographical control of crystal nucleation. Crystal Growth Design. 2012;12(2):750–755.  [Web of Science ®], [Google Scholar]
  • Liu YX, Wang XJ, Lu J, et al. Influence of the roughness, topography, and physicochemical properties of chemically modified surfaces on the heterogeneous nucleation of protein crystals. J Phys Chem B. 2007;111(50):13971–13978.  [PubMed] [Web of Science ®], [Google Scholar]
  • Zhang Y, Wang M, Lin X, et al. Effect of substrate surface microstructure on heterogeneous nucleation behavior. J Mater Sci Technol. 2012;28(1):67–72.  [Web of Science ®], [Google Scholar]
  • Mu C, Pang J, Lu Q, et al. Effects of surface topography of material on nucleation site density of dropwise condensation. Chem Eng Sci. 2008;63(4):874–880.  [Web of Science ®], [Google Scholar]
  • Qi Y, Klausner JF, Mei R. Role of surface structure in heterogeneous nucleation. Int J Heat Mass Transf. 2004;47(14–16):3097–3107.  [Web of Science ®], [Google Scholar]
  • Ohring M. Materials science of thin films. 2nd ed. Cambridge (MA): Academic Press; 2002.  [Google Scholar]
  • Zeng Q, Xu S. Thermodynamics and characteristics of heterogeneous nucleation on fractal surfaces. J Phys Chem C. 2015;119(49):27426–27433.  [Web of Science ®], [Google Scholar]
  • Page AJ, Sear RP. Crystallization controlled by the geometry of a surface. J Am Chem Soc. 2009;131(48):17550–17551.  [PubMed] [Web of Science ®], [Google Scholar]
  • Mandal S. Nucleation of diamond films on heterogeneous substrates: a review. RSC Adv. 2021;11(17):10159–10182.  [PubMed] [Web of Science ®], [Google Scholar]
  • Higuchi K, Noda S. Selected area diamond deposition by control of the nucleation sites. Diamond Relat Mater. 1992;1(2–4):220–229.  [Web of Science ®], [Google Scholar]
  • Ascarelli P, Fontana S. Dissimilar grit-size dependence of the diamond nucleation density on substrate surface pretreatments. Appl Surf Sci. 1993;64(4):307–311.  [Web of Science ®], [Google Scholar]
  • Buijnsters JG, Vázquez L, ter Meulen JJ. Substrate Pre-Treatment by ultrasonication with diamond powder mixtures for nucleation enhancement in diamond film growth. Diamond Relat Mater. 2009;18(10):1239–1246.  [Web of Science ®], [Google Scholar]
  • Lee ST, Lin Z, Jiang X. CVD diamond films: nucleation and growth. Mater Sci Eng R. 1999;25(4):123–154.  [Web of Science ®], [Google Scholar]
  • Pobedinskas P, Janssens SD, Hernando J, et al. Selective seeding and growth of nanocrystalline CVD diamond on non-diamond substrates. MRS Proc. 2011;1339:1339.  [Google Scholar]
  • Rotter SZ, Madaleno JC. Diamond CVD by a combined plasma pretreatment and seeding procedure. Chem Vap Deposition. 2009;15(7–9):209–216.  [Google Scholar]
  • Arnault JC, Demuynck L, Speisser C, et al. Mechanisms of CVD diamond nucleation and growth on mechanically scratched Si (100) surfaces. Eur Phys J B. 1999;11(2):327–343.  [Web of Science ®], [Google Scholar]
  • Shenderova O, Hens S, McGuire G. Seeding slurries based on detonation nanodiamond in DMSO. Diamond Relat Mater. 2010;19(2–3):260–267.  [Web of Science ®], [Google Scholar]
  • Williams OA, Douhéret O, Daenen M, et al. Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem Phys Lett. 2007;445(4–6):255–258.  [Web of Science ®], [Google Scholar]
  • Haenen K, Pobedinskas P, Ramaneti R. Growing diamond layers. Patent no. EP3745446A1. 2020 Feb 12.  [Google Scholar]
  • Anger E, Gicquel A, Wang ZZ, et al. Chemical and morphological modifications of silicon wafers treated by ultrasonic impacts of powders: consequences on diamond nucleation. Diamond Relat Mater. 1995;4(5–6):759–764.  [Web of Science ®], [Google Scholar]
  • Domonkos M, Ižák T, Varga M, et al. Diamond nucleation and growth on horizontally and vertically aligned Si substrates at low pressure in a linear antenna microwave plasma system. Diamond Relat Mater. 2018;82:41–49.  [Web of Science ®], [Google Scholar]
  • Stoner BR, Ma GHM, Wolter SD, et al. Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy. Phys Rev B. 1992;45(19):11067–11084.  [Web of Science ®], [Google Scholar]
  • Maillard-Schaller E, Küttel OM, Gröning P, et al. Local heteroepitaxy of diamond on silicon (100): a study of the interface structure. Phys Rev B. 1997;55(23):15895–15904.  [Web of Science ®], [Google Scholar]
  • Pobedinskas P, Degutis G, Dexters W, et al. Surface plasma pretreatment for enhanced diamond nucleation on AlN. Appl Phys Lett. 2013;102(20):201609.  [Web of Science ®], [Google Scholar]
  • Damm DD, Contin A, Cardoso LDR, et al. A novel method to mitigate residual stress in CVD diamond film on steel substrates with a single intermediate layer. Surf Coat Technol. 2019;357:93–102.  [Web of Science ®], [Google Scholar]
  • Mallik AK, Bysakh S, Bhar R, et al. Effect of seed size, suspension recycling and substrate pre-treatment on the CVD growth of diamond coatings. OJAppS. 2015;05(12):747–763.  [Google Scholar]
  • Mallik AK, Mendes JC, Rotter SZ, et al. Detonation nanodiamond seeding technique for nucleation enhancement of CVD diamond – some experimental insights. Adv Ceramic Sci Eng. 2014;3(0):36–45.  [Google Scholar]
  • Mallik AK, Binu SR, Satapathy LN, et al. Effect of substrate roughness on growth of diamond by hot filament CVD. Bull Mater Sci. 2010;33(3):251–255.  [Web of Science ®], [Google Scholar]
  • Mandal S, Thomas ELH, Middleton C, et al. Surface zeta potential and diamond seeding on gallium nitride films. ACS Omega. 2017;2(10):7275–7280.  [PubMed] [Web of Science ®], [Google Scholar]
  • Bland HA, Thomas ELH, Klemencic GM, et al. Superconducting diamond on silicon nitride for device applications. Sci Rep. 2019;9(1):2911.  [PubMed], [Google Scholar]
  • Li X, Gao Y, Ge P, et al. Nucleation location and propagation direction of radial and median cracks for brittle material in scratching. Ceram Int. 2019;45(6):7524–7536.  [Web of Science ®], [Google Scholar]
  • Possan AL, Menti C, Beltrami M, et al. Effect of surface roughness on performance of magnetoelastic biosensors for the detection of Escherichia coli. Mater Sci Eng, C. 2016;58:541–547.  [PubMed] [Web of Science ®], [Google Scholar]
  • Perry SC, Gateman SM, Sifakis J, et al. Enhancement of the enzymetic biosensor response through targeted electrode surface roughness. J Electrochem Soc. 2018;165(12):G3074–G3079.  [Web of Science ®], [Google Scholar]
  • Babchenko O, Potocký Š, Ižák T, et al. Influence of surface wave plasma deposition conditions on diamond growth regime. Surf Coat Technol. 2015;271:74–79.  [Web of Science ®], [Google Scholar]
  • Kromka A, Potocký Š, Čermák J, et al. Early stage of diamond growth at low temperature. Diamond Relat Mater. 2008;17(7–10):1252–1255.  [Web of Science ®], [Google Scholar]
  • Das D, Singh RN. A review of nucleation, growth and low temperature synthesis of diamond thin films. Int Mater Rev. 2007;52(1):29–64.  [Web of Science ®], [Google Scholar]
  • Pobedinskas P, Degutis G, Dexters W, et al. Nano­diamond seeding on plasma-treated tantalum thin films and the role of surface contamination. Appl Surf Sci. 2021;538:148016.  [Web of Science ®], [Google Scholar]
  • Drijkoningen S. Low temperature deposition and characterisation of high quality nanocrystalline diamond films for the fabrication of highly sensitive pressure sensing membranes. Belgium: Hasselt University; 2017.  [Google Scholar]
  • Rabinovich YI, Adler JJ, Ata A, et al. Adhesion between nanoscale rough surfaces. I. Role of asperity geometry. J Colloid Interface Sci. 2000;232(1):10–16.  [PubMed] [Web of Science ®], [Google Scholar]
  • Drijkoningen S, Pobedinskas P, Korneychuk S, et al. On the origin of diamond plates deposited at low temperature. Crystal Growth Design. 2017;17(8):4306–4314.  [Web of Science ®], [Google Scholar]
  • Mallik AK, Bysakh S, Sreemany M, et al. Property mapping of polycrystalline diamond coatings over large area. J Adv Ceram. 2014;3(1):56–70.  [Web of Science ®], [Google Scholar]
  • Pal KS, Mallik AK, Dandapat N, et al. Microscopic properties of MPCVD diamond coatings studied by micro-Raman and micro-photoluminescence spectroscopy. Bull Mater Sci. 2015;38(2):537–549.  [Web of Science ®], [Google Scholar]