Skip to main content
Research Article

High-power dual-wavelength intracavity diamond Raman laser

Hui Chen ,
Yufan Cui ,
Xiaowei Li ,
Boyuan Zhang ,
Yunpeng Cai ,
Jie Ding ,
Yaoyao Qi ,
Bingzheng Yan ,
Yulei Wang ,
Zhiwei Lu ,
Zhenxu Bai
+ 3 authors fewer
Volume 3, Issue 1 (2023)
DOI: 10.1080/26941112.2023.2282527

Keywords

Diamond; Raman laser; intracavity; high-power; dual-wavelength

References

  • Sharma U, Kim CS, Kang JU. Highly stable tunable ­dual-wavelength Q-switched fiber laser for DIAL ­applications. IEEE Photon Technol Lett. 2004;16(5):1–7.  [Crossref] [Web of Science ®], [Google Scholar]
  • Akbari R, Zhao H, Major A. High-power continuous­wave dual-wavelength operation of a diode-pumped Yb: KGW laser. Opt Lett. 2016;41(7):1601–1604.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Borsutzky A, BrüNger R, Huang C, et al. Harmonic and sumfrequency generation of pulsed laser radiation in BBO, LBO, and KD*P. Appl Phys B. 1991;52(1):55–62.  [Crossref], [Google Scholar]
  • Bai Z, Yuan H, Liu Z, et al. Stimulated Brillouin scattering materials, experimental design and applications: a review. Opt Mater. 2018;75:626–645.  [Crossref] [Web of Science ®], [Google Scholar]
  • Chen H, Bai Z, Yang X, et al. Enhanced stimulated Brillouin scattering utilizing Raman conversion in diamond. Appl Phys Lett. 2022;120(18):181103.  [Crossref] [Web of Science ®], [Google Scholar]
  • Merklein M, Kabakova IV, Zarifi A, et al. 100 Years of Brillouin scattering: historical and future perspectives. Appl Phys Rev. 2022;9(4):041306.  [Crossref] [Web of Science ®], [Google Scholar]
  • Shen H, Wang Q, Zhang X, et al. 1st-Stokes and 2nd-Stokes dual-wavelength operation and mode-locking modulation in diode-side-pumped Nd: YAG/BaWO4 Raman laser. Opt Express. 2012;20(16):17823–17832.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Zhang H, Chen X, Wang Q, et al. Dual-wavelength actively qswitched diode-end-pumped ceramic Nd: YAG/BaWO4 Raman laser operating at 1240 and 1376 nm. Laser Phys Lett. 2014;11(10):105806.  [Crossref] [Web of Science ®], [Google Scholar]
  • Sun Y, Lee C, Zhu Z, et al. Dual-polarization balanced Yb: GAB crystal for an intracavity simultaneous orthogonally polarized multi-wavelength KGW Raman laser. Opt Mater Express. 2016;6(11):3550–3557.  [Crossref] [Web of Science ®], [Google Scholar]
  • Tu Z, Dai S, Chen M, et al. High-peak-power eye-safe orthogonally-polarized dual-wavelength Nd: YLF/KGW Raman laser. Opt Express. 2020;28(6):8802–8810.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Lu FX. Past, present, and the future of the research and commercialization of CVD diamond in China. Functional Diamond. 2022;2(1):119–141.  [Taylor & Francis Online], [Google Scholar]
  • Mildren RP, Rabeau JR. Optical engineering of diamond. Weinheim, Germany: Wiley‐VCH Verlag GmbH & Co. KGaA; 2013.  [Crossref], [Google Scholar]
  • Friel I, Geoghegan SL, Twitchen DJ, et al. Development of high quality single crystal diamond for novel laser applications. Proc. SPIE, 2010, 7838, 783819.  [Crossref], [Google Scholar]
  • Balmer RS, Brandon JR, Clewes SL, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications. J Phys Condens Matter. 2009;21(36):364221.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Savitski VG, Reilly S, Kemp AJ. Steady-state Raman gain in diamond as a function of pump wavelength. IEEE J Quantum Electron. 2013;49(2):218–223.  [Crossref] [Web of Science ®], [Google Scholar]
  • Williams RJ, Kitzler O, Bai Z, et al. High power diamond Raman lasers. IEEE J Select Topics Quantum Electron. 2018;24(5):1602214.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Li Y, Bai Z, Chen H, et al. Eye-safe diamond Raman laser. Results Phys. 2020;16:102853.  [Crossref] [Web of Science ®], [Google Scholar]
  • Bai Z, Williams RJ, Kitzler O, et al. 302 W quasi­continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement. Opt Express. 2018;26(16):19797–19803.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Granados E, Spence DJ, Mildren RP. Deep ultraviolet diamond Raman laser. Opt Express. 2011;19(11):10857–10863.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Mildren RP, Butler JE, Rabeau JR. CVD-diamond external cavity Raman laser at 573 nm. Opt Express. 2008;16(23):18950–18955.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Tu H, Ma S, Hu Z, et al. Efficient monolithic diamond Raman yellow laser at 572.5 nm. Opt Mater. 2021;114:110912.  [Crossref] [Web of Science ®], [Google Scholar]
  • Williams RJ, Nold J, Strecker M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond. Laser & Photonics Rev. 2015;9(4):405–411.  [Crossref] [Web of Science ®], [Google Scholar]
  • Sabella A, Piper JA, Mildren RP. Mid-infrared diamond Raman laser with tuneable output. Solid State Lasers XXIII: Technology and Devices. Vol. 8959. SPIE, 2014.  [Google Scholar]
  • Sabella A, Piper JA, Mildren RP. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm. Opt Lett. 2014;39(13):4037–4040.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Heinzig M, Palma-Vega G, Yildiz B, et al. Continuous-wave cascaded second stokes diamond Raman laser at 1477 nm. Opt Lett. 2021;46(5):1133–1136.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • McKay A, Liu H, Kitzler O, et al. An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output. Laser Phys Lett. 2013;10(10):105801.  [Crossref] [Web of Science ®], [Google Scholar]
  • Warrier AM, Lin J, Pask HM, et al. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm. Opt Express. 2014;22(3):3325–3333.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Reilly S, Savitski VG, Liu H, et al. Monolithic diamond Raman laser. Opt Lett. 2015;40(6):930–933.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Echarri DT, Chrysalidis K, Fedosseev VN, et al. Broadly tunable linewidth-invariant Raman stokes comb for selective resonance photoionization. Opt Express. 2020;28(6):8589–8600.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Li M, Kitzler O, Spence DJ. Investigating single­longitudinal-mode operation of a continuous wave second stokes diamond Raman ring laser. Opt Express. 2020;28(2):1738–1744.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Kitzler O, McKay A, Spence DJ, et al. Modelling and optimization of continuous-wave external cavity Raman lasers. Opt Express. 2015;23(7):8590–8602.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Frey R, de Martino A, Pradère F. High-efficiency pulse compression with intracavity Raman oscillators. Opt Lett. 1983;8(8):437–439.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Echarri DT, Mildren RP, Olaizola SM, et al. Cascaded stokes polarization conversion in cubic Raman crystals. Opt Express. 2021;29(1):291–304.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Lubeigt W, Bonner GM, Hastie JE, et al. An intra-cavity Raman laser using synthetic single-crystal diamond. Opt Express. 2010;18(16):16765–16770.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Yang H, Chen Y, Ding K, et al. Investigation of a ­highly compact intracavity actively Q-switched Cascade diamond Raman laser. Appl Opt. 2020;59(31):9715–9721.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Ma S, Tu H, Lu D, et al. Efficient Raman red laser with second-order stokes effect of diamond crystal. Opt Commun. 2021;478:126399.  [Crossref] [Web of Science ®], [Google Scholar]
  • Mildren RP, Sabella A. Highly efficient diamond Raman laser. Opt Lett. 2009;34(18):2811–2813.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Pashinin VP, Ralchenko VG, Bolshakov AP, et al. Diamond Raman laser emitting at 1194, 1419, and 597 nm. Quantum Electron. 2018;48(3):201–205.  [Crossref] [Web of Science ®], [Google Scholar]
  • McKay A, Kitzler O, Liu H, et al. High average power (11 W) eye-safe diamond Raman laser. High-Power Lasers and Applications VI. SPIE, 2012, 8551.  [Crossref], [Google Scholar]
  • Wang Y, Peng W, Yang X, et al. Efficient operation near the quantum limit in external cavity diamond Raman laser. Laser Phys. 2020;30(9):095002.  [Crossref] [Web of Science ®], [Google Scholar]
  • Pashinin VP, Ralchenko VG, Bolshakov AP, et al. External-cavity diamond Raman laser performance at 1240 nm and 1485 nm wavelengths with high pulse energy. Laser Phys Lett. 2016;13(6):065001.  [Crossref] [Web of Science ®], [Google Scholar]
  • Pask HM, Dekker P, Mildren RP, et al. Wavelength-versatile visible and UV sources based on crystalline Raman lasers. Prog Quantum Electron. 2008;32(3–4):121–158.  [Crossref] [Web of Science ®], [Google Scholar]
  • Liu Y, You W, Zhu C, et al. A review of ns-pulsed Raman lasers based on diamond crystal. Front Phys. 2022;10:1054234.  [Crossref] [Web of Science ®], [Google Scholar]
  • Granados E, Granados C, Ahmed R, et al. Spectral synthesis of multimode lasers to the Fourier limit in integrated Fabry–Perot diamond resonators. Optica. 2022;9(3):317–324.  [Crossref] [Web of Science ®], [Google Scholar]
  • Granados E, Stoikos G. Spectral purification of ­single-frequency stokes pulses in doubly resonant integ­rated diamond resonators. Opt Lett. 2022;47(16):3976–3979.  [Crossref] [Web of Science ®], [Google Scholar]
  • Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain. Optica. 2016;3(8):876–881.  [Crossref] [Web of Science ®], [Google Scholar]
  • Chen H, Bai Z, Cai Y, et al. Order controllable enhanced stimulated brillouin scattering utilizing cascaded diamond Raman conversion. Appl Phys Lett. 2023;122(9):092209.  [Crossref] [Web of Science ®], [Google Scholar]
  • Bai Z, Williams RJ, Jasbeer H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser conversion. Opt Lett. 2018;43(3):563–566.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
240
Favorite
Share

Related articles