Skip to main content
Research Article

Effect of step-flow modulation on the large-size single crystal diamond through mosaic growth

Genzhuang Li ,
Dongshuai Li ,
Caoyuan Mu ,
Qiliang Wang ,
Xianyi Lv ,
Liuan Li ,
Guangtian Zou
Volume 3, Issue 1 (2023)
DOI: 10.1080/26941112.2023.2279057

Keywords

Single crystal diamond; Mosaic growth; Step-flow orientation; Boundary; MPCVD

References

  • Asif Khan M, Kuznia J, Bhattarai A, et al. Metal semiconductor field effect transistor based on single crystal GaN. Appl Phys Lett. 1993;62(15):1–9.  [Crossref] [Web of Science ®], [Google Scholar]
  • Roccaforte F, Fiorenza P, Greco G, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron Eng. 2018;187–188:66–77.  [Crossref] [Web of Science ®], [Google Scholar]
  • Matsunami H. Fundamental research on semiconductor SiC and its applications to power electronics. Proc Jpn Acad, Ser B. 2020;96(7):235–254.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Umezawa H, Mokuno Y, Yamada H, et al. Chara­cterization of Schottky barrier diodes on a 0.5-inch single-crystalline CVD diamond wafer. Diamond Relat Mater. 2010;19(2–3):208–212.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ikeda K, Umezawa H, Tatsumi N, et al. Fabrication of a field plate structure for diamond schottky barrier diodes. Diamond Relat Mater. 2009;18(2–3):292–295.  [Crossref] [Web of Science ®], [Google Scholar]
  • Bauer C, Baumann I, Colledani C, et al. Radiation hardness studies of CVD diamond detectors. Nucl Instrum Methods Phys Res, Sect A. 1995;367(1–3):207–211.  [Crossref] [Web of Science ®], [Google Scholar]
  • Achard J, Silva F, Issaoui R, et al. Thick boron doped diamond single crystals for high power electronics. Diamond Relat Mater. 2011;20(2):145–152.  [Crossref] [Web of Science ®], [Google Scholar]
  • Perez G, Maréchal A, Chicot G, et al. Diamond semiconductor performances in power electronics applications. Diamond Relat Mater. 2020;110:108154.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ansari D, Jeong JH. A silicon-diamond microchannel heat sink for die-level hotspot thermal management. Appl Therm Eng. 2021;194:117131.  [Crossref] [Web of Science ®], [Google Scholar]
  • Bradac C, Gao W, Forneris J, et al. Quantum nanophotonics with group IV defects in diamond. Nat Commun. 2019;10(1):1–13.  [Crossref] [PubMed], [Google Scholar]
  • Abobeih MH, Wang Y, Randall J, et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature. 2022;606(7916):884–889.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Xie W-L, Lv X-Y, Wang Q-L, et al. Relationship between the spatial position of the seed and growth mode for single-crystal diamond grown with an enclosed-type holder. Chinese Phys. B. 2022;31(10):108106.  [Crossref] [Web of Science ®], [Google Scholar]
  • Li D, Wang T, Lin W, et al. Design of vertical diamond schottky barrier diode with a novel beveled junction termination extension. Diamond Relat Mater. 2022;128:109300.  [Crossref] [Web of Science ®], [Google Scholar]
  • Sumiya H, Tamasaku K. Large defect-free synthetic type IIa diamond crystals synthesized via high pressure and high temperature. Jpn J Appl Phys. 2012;51(9R):090102.  [Crossref], [Google Scholar]
  • Ohmagari S, Yamada H, Tsubouchi N, et al. Toward high‐performance diamond electronics: control and annihilation of dislocation propagation by metal‐assisted termination. Physica Status Solidi (A). 2019;216(21):1900498.  [Crossref] [Web of Science ®], [Google Scholar]
  • Kim S-W, Takaya R, Hirano S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (112–0) misoriented substrate by step-flow mode. Appl Phys Express. 2021;14(11):115501.  [Crossref] [Web of Science ®], [Google Scholar]
  • Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017;7(1):1–8.  [Crossref] [PubMed], [Google Scholar]
  • Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-­patterned nucleation and growth on Ir. Diamond Relat Mater. 2019;94:92–100.  [Crossref] [Web of Science ®], [Google Scholar]
  • Geis M. Device quality diamond substrates. Diamond Relat Mater. 1992;1(5–6):684–687.  [Crossref] [Web of Science ®], [Google Scholar]
  • Pryor RW, Geis MW, Clark HR. Growth technique for large area mosaic diamond films. MRS Online Proceedings Library. 1992;242(1):13–22.  [Crossref], [Google Scholar]
  • Geis MW, Efremow NN, Susalka R, et al. Mosaic diamond substrates approaching single-crystal quality ­using cube-shaped diamond seeds. Diamond Relat Mater. 1994;4(1):76–82.  [Crossref] [Web of Science ®], [Google Scholar]
  • GSA, et al. Epitaxial growth of mosaic diamond: mapping of stress and defects in crystal junction with a confocal Raman spectroscopy. J Cryst Growth. 2017;463:19–26.  [Crossref] [Web of Science ®], [Google Scholar]
  • Anatoly, et al. Characterization of interfaces in mosaic CVD diamond crystal. J Cryst Growth. 2016;442:62–67.  [Crossref] [Web of Science ®], [Google Scholar]
  • Wang X, Duan P, Cao Z, et al. Surface morphology of the interface junction of CVD mosaic single-crystal diamond. Materials. 2019;13(1):91.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Yamada H, Chayahara A, Mokuno Y, et al. Fabrication of 1 inch mosaic crystal diamond wafers. Appl Phys Express. 2010;3(5):051301–051301.  [Crossref] [Web of Science ®], [Google Scholar]
  • Yamada H, Chayahara A, Mokuno Y, et al. Developments of elemental technologies to produce inch-size single-­crystal diamond wafers. Diamond Relat Mater. 2011;20(4):616–619.  [Crossref] [Web of Science ®], [Google Scholar]
  • Yamada H, Chayahara A, Umezawa H, et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size. Diamond & Related Materials. 2012;24:29–33.  [Crossref] [Web of Science ®], [Google Scholar]
  • Yamada H, Chayahara A, Mokuno Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond. Appl Phys Lett. 2014;104(10):102110.  [Crossref] [Web of Science ®], [Google Scholar]
  • Shikata, et al. Effects of crystallographic orientation on the homoepitaxial overgrowth on tiled single crystal diamond clones. Diamond Relat Mater. 2015;57:17–21.  [Crossref] [Web of Science ®], [Google Scholar]
  • Li H, Zhang T, Li L, et al. Investigation on crystalline structure, boron distribution, and residual stresses in freestanding boron-doped CVD diamond films. J Cryst Growth. Jun 1 2010;312(12-13):1986–1991.  [Crossref] [Web of Science ®], [Google Scholar]
514
Favorite
Share

Related articles