Skip to main content
Review Article

Research progress on electrochemical property and surface modifications of nanodiamond powders

Liang Dong ,
Guohao Zhu ,
Jianbing Zang ,
Yanhui Wang
Volume 3, Issue 1 (2023)
DOI: 10.1080/26941112.2023.2234469


AbstractNanodiamond (ND) has strong chemical stability, the initial oxidation temperature of ND is above 500 °C. A variety of oxygen-containing functional groups are adsorbed on the surface of ND, which makes ND has certain conductivity. Then ND can be used as highly stable catalyst or ideal support material. This paper reviews the properties, functionalization and electrochemical applications of ND. In this review, the catalytic activity and stability of diamond-based catalysts can be further improved by appropriately functionalizing ND, and the research progress in the field of electrochemistry can be increased.


Nanodiamond; surface modification; electrochemical application


  • Bagheri S, Muhd Julkapli N. Nano-diamond based photocatalysis for solar hydrogen production. Int J Hydrogen Energy. 2020;45(56):1–22. [Crossref], [Web of Science ®], [Google Scholar]
  • Zkria A, Gima H, Abubakr E, et al. Correlated electrical conductivities to chemical configurations of nitrogenated nanocrystalline diamond films. Nanomaterials. 2022;12(5):854. [Crossref], [Web of Science ®], [Google Scholar]
  • Zeng Z, Yang L, Zeng Q, et al. Synthesis of quenchable amorphous diamond. Nat Commun. 2017;8(1):322. [Crossref], [PubMed], [Google Scholar]
  • Yu S, Liu S, Jiang X, et al. Recent advances on electrochemistry of diamond related materials. Carbon. 2022;200:517–542. [Crossref], [Web of Science ®], [Google Scholar]
  • Deng Z, Zhu R, Ma L, et al. Diamond for antifouling applications: a review. Carbon. 2022;196:923–939. [Crossref], [Web of Science ®], [Google Scholar]
  • Kowalska M, Paprocki K, Szybowicz M, et al. Electrochemical sensitivity of undoped CVD diamond films as function of their crystalline quality. J Electroanal Chem. 2020;859:113811. [Crossref], [Web of Science ®], [Google Scholar]
  • Yang Z, Li M, Li H, et al. Polycrystalline boron-doped diamond-based electrochemical biosensor for simultaneous detection of dopamine and melatonin. Analytica Chimica Acta. 2020;1135:73–82. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Rao TN, Yagi I, Miwa T, et al. Electrochemical oxidation of NADH at highly boron-doped diamond electrodes. Anal Chem. 1999;71(13):2506–2511. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Li C, Ge P, Bi W. Thermal simulation of the continuous pulse discharge for electro-spark deposition diamond wire saw. Int J Adv Manuf Technol. 2022;119(5–6):2923–2933. [Crossref], [Web of Science ®], [Google Scholar]
  • Lu Z, Huang N, Zhai Z, et al. Integration of 3D interconnected porous microstructure and high electrochemical property for boron-doped diamond by facile strategy. J Mater Sci Technol. 2022;105:26–35. [Crossref], [Web of Science ®], [Google Scholar]
  • Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J Phys D Appl Phys. 2020;53(9):093001. [Crossref], [Web of Science ®], [Google Scholar]
  • Vinokur N, Miller B, Avyigal Y, et al. Electrochemical behavior of boron‐doped diamond electrodes. J Electrochem Soc. 1996;143(10):L238–L240. [Crossref], [Web of Science ®], [Google Scholar]
  • Bouamrane F, Tadjeddine A, Butler JE, et al. C. IAvy-C16ment, electrochemical study of diamond thin films in neutral and basic solutions of nitrate. J Electroana Chem. 1996;405(1–2):95–99. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang J, He Z, Tan X, et al. Achieving high capacitance from porous boron-doped diamond by tuning the surface termination. Surf Coat Technol. 2021;408:126814. [Crossref], [Web of Science ®], [Google Scholar]
  • Guo C, Zheng J, Deng H, et al. Photoelectrocatalytic interface of boron-doped diamond: modification, functionalization and environmental applications. Carbon. 2021;175:454–466. [Crossref], [Web of Science ®], [Google Scholar]
  • Wu Z, Yano T, Tryk DA, et al. Observation of electrochemical C60 reduction of a diamond thin film electrode at room temperature. Chem Lett. 1998;27(6):503–504. [Crossref], [Google Scholar]
  • Li LF, Totir D, Miller B, et al. The electrochemistry of boron-doped diamond films on single crystal diamond in Li+-based solid polymer electrolyte in ultrahigh vacuum. J Am Chem Soc. 1997;119(33):7875–7876. [Crossref], [Web of Science ®], [Google Scholar]
  • Mitura KA, Włodarczyk E. Fluorescent nanodiamonds in biomedical applications. J AOAC Int. 2018;101(5):1297–1307. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Kondo T, Okada N, Yamaguchi Y, et al. Boron-doped nanodiamond powder prepared by solid-state diffusion method. Chem Lett. 2015;44(5):627–629. [Crossref], [Web of Science ®], [Google Scholar]
  • Mansoor M, Mansoor M, Mansoor M, et al. Ab-initio calculation of point defect equilibria during heat treatment: nitrogen, hydrogen, and silicon doped diamond. Diamond Relat Mater. 2022;126:109072. [Crossref], [Web of Science ®], [Google Scholar]
  • Miliaieva D, Matunova P, Cermak J, et al. Nanodiamond surface chemistry controls assembly of polypyrrole and generation of photovoltage. Sci Rep. 2021;11(1):590. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Głowacki MJ, Ficek M, Sawczak M, et al. Fluorescence of nanodiamond cocktails: pH-induced effects through interactions with comestible liquids. Food Chem. 2022;381:132206. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Sundar LS, Punnaiah V, Sharma KV, et al. Thermal entropy and exergy efficiency analyses of nanodiamond/water nanofluid flow in a plate heat exchanger. Diamond Relat Mater. 2021;120:108648. [Crossref], [Web of Science ®], [Google Scholar]
  • Alagappan G, Krivitsky LA, Png CE. Purcell enhancement of light emission in nanodiamond using a trenched nanobeam cavity. J Opt. 2020;22(2):025401. [Crossref], [Web of Science ®], [Google Scholar]
  • Hunge YM, Yadav AA, Khan S, et al. Photocatalytic degradation of bisphenol a using titanium dioxide@nanodiamond composites under UV light illumination. J Coll Interface Sci. 2021;582:1058–1066. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Karami P, Khorshidi B, Shamaei L, et al. Nanodiamond-enabled thin-film nanocomposite polyamide membranes for high-temperature water treatment. ACS Appl Mater Interfaces. 2020;12(47):53274–53285. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Sohouli E, Shahdost-Fard F, Rahimi-Nasrabadi M, et al. Introducing a novel nanocomposite consisting of nitrogen-doped carbon nano-onions and gold nanoparticles for the electrochemical sensor to measure acetaminophen. J Electroana Chem. 2020;871:114309. [Crossref], [Web of Science ®], [Google Scholar]
  • Cao N, Wang X, Liang L, et al. Sulfonated nano-diamonds composite sulfonated reduced graphene oxide: a efficient hydrophilic material for high performance supercapacitors. Diamond Relat Mater. 2022;125:108974. [Crossref], [Web of Science ®], [Google Scholar]
  • Chen X, Jia Z, Huang F, et al. Atomically dispersed metal catalysts on nanodiamond and its derivatives: synthesis and catalytic application. Chem Commun. 2021;57(88):11591–11603. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Jiang L, Santiago I, Foord J. A comparative study of fouling-free nanodiamond and nanocarbon electrochemical sensors for sensitive bisphenol a detection. Carbon. 2021;174:390–395. [Crossref], [Web of Science ®], [Google Scholar]
  • Zang JB, Wang YH, Zhao SZ, et al. Electrochemical properties of nanodiamond powder electrodes. Diamond Relat Mater. 2007;16(1):16–20. [Crossref], [Web of Science ®], [Google Scholar]
  • Bian LY, Wang YH, Lu J, et al. Synthesis and electrochemical properties of TiO2/nanodiamond nanocomposite. Diamond Relat Mater. 2010;19(10):1178–1182. [Crossref], [Web of Science ®], [Google Scholar]
  • Bian L. Preparation and electrochemical properties of nanodiamond based electrode material. Qinhuangdao: Yanshan University; 2011. [Google Scholar]
  • Sangfai T, Tantishaiyakul V, Hirun N, et al. Preparation and characterization of к-carrageenan and xyloglucan blends for sustained release of a hydrophilic drug. Polym Bull. 2015;72(7):1647–1661. [Crossref], [Web of Science ®], [Google Scholar]
  • Li Q, Zhu J, Wang S, et al. Microwave absorption on a bare biomass derived holey silica-hybridized carbon absorbent. Carbon. 2020;161:639–646. [Crossref], [Web of Science ®], [Google Scholar]
  • Li W, Yang Z, Zha F, et al. Preparation of well-dispersed lubricant additives with excellent antiwear ability under high load. Tribol Lett. 2020;68(3):94. [Crossref], [Web of Science ®], [Google Scholar]
  • Chalupczok S, Kurzweil P, Hartmann H, et al. The redox chemistry of ruthenium dioxide: a cyclic voltammetry study—review and revision. Int J Electrochem. 2018;2018:1–15. [Crossref], [Web of Science ®], [Google Scholar]
  • Meng F. Study on surface modifications and electrochemical properties of nanodiamond. Qinhuangdao: Yanshan University; 2011. [Google Scholar]
  • Wang H, Sayed SY, Luber EJ, et al. Redox flow batteries: how to determine electrochemical kinetic parameters. ACS Nano. 2020;14(3):2575–2584. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Park JW, Kim KS, Hwang NM. Gas phase generation of diamond nanoparticles in the hot filament chemical vapor deposition reactor. Carbon. 2016;106:289–294. [Crossref], [Web of Science ®], [Google Scholar]
  • Do DD, Do HD, Wongkoblap A, et al. Henry constant and isosteric heat at zero-loading for gas adsorption in carbon nanotubes. Phys Chem Chem Phys. 2008;10(48):7293–7303. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Zang J, Wang Y, Bian L, et al. Graphene growth on nanodiamond as a support for a Pt electrocatalyst in methanol electro-oxidation. Carbon. 2012;50(8):3032–3038. [Crossref], [Web of Science ®], [Google Scholar]
  • Holt KB, Caruana DJ, Millán-Barrios EJ. Electrochemistry of undoped diamond nanoparticles: accessing surface redox states. J Am Chem Soc. 2009;131(32):11272–11273. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Veronezi GM, Felisbino MB, Gatti MS, et al. DNA methylation changes in valproic acid-treated HeLa cells as assessed by image analysis, immunofluorescence and vibrational microspectroscopy. PLoS One. 2017;12(1):e0170740. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Lyon JT, Cho HG, Andrews L, et al. Infrared and DFT investigations of the XC≡ReX3 and HC≡ReX3 complexes: Jahn − Teller distortion and the methylidyne C − X(H) stretching absorptions. Inorg Chem. 2007;46(21):8728–8738. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Lichawska ME, Kufelnicki A, Woźniczka M. Interaction of microcrystalline chitosan with graphene oxide (GO) and magnesium ions in aqueous solution. BMC Chem. 2019;13(1):57. [Crossref], [PubMed], [Google Scholar]
  • Inokuchi Y, Ohashi K, Honkawa Y, et al. Infrared photodissociation spectroscopy of [aniline-(water)n]+ (n = 1-8): structural change from branched and cyclic to proton-transferred forms. J Phys Chem A. 2003;107(21):4230–4237. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhao GY, Li HL. Preparation of polyaniline nanowire arrayed electrodes for electrochemical supercapacitors. Microporous Mesoporous Mater. 2008;110(2–3):590–594. [Crossref], [Web of Science ®], [Google Scholar]
  • Chu X, Zhu Z, Huang H, et al. Conducting polymer ink for flexible and printable micro-supercapacitors with greatly-enhanced rate capability. J Power Sources. 2021;513:230555. [Crossref], [Web of Science ®], [Google Scholar]
  • Li L, Song H, Zhang Q, et al. Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors. J Power Sources. 2009;187(1):268–274. [Crossref], [Web of Science ®], [Google Scholar]
  • Bao LQ, Nguyen TH, Fei H, et al. Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors. Electrochimica Acta. 2021;367:137563. [Crossref], [Web of Science ®], [Google Scholar]
  • Wu G, Li L, Li JH, et al. Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation. Carbon. 2005;43(12):2579–2587. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhao XY, Zang JB, Wang YH, et al. Electropolymerizing polyaniline on undoped 100 nm diamond powder and its electrochemical characteristics. Electrochem Commun. 2009;11(6):1297–1300. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhao X. Electropolymerization and electrochemical properties of polyaniline/diamond composite. Qinhuangdao: Yanshan University; 2010. [Google Scholar]
  • Chaquin P, Costa D, Lepetit C, et al. Structure and bonding in a series of neutral and cationic transition metal-benzene 6 complexes [M(η6-C6H6)]n+ (M = Ti, V, Cr, Fe, Co, Ni, and Cu). correlation of charge transfer with the bathochromic shift of the E1 ring vibration. J Phys Chem A. 2001;105(18):4541–4545. [Crossref], [Web of Science ®], [Google Scholar]
  • Chu X, Zhao X, Zhou Y, et al. An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nano Energy. 2020;76:105179. [Crossref], [Web of Science ®], [Google Scholar]
  • Khalil KMS, Khairy M, Allam OAS, et al. Formation of improved activated carbons from sugarcane bagasse as environmental materials for adsorption of phenolic pollutants. Int J Environ Sci Technol. 2022;19(4):3103–3116. [Crossref], [Web of Science ®], [Google Scholar]
  • Aleisa R, Feng J, Ye Z, et al. Rapid high-contrast photoreversible coloration of surface-functionalized N-doped TiO2 nanocrystals for rewritable light-printing. Angew Chem Int Ed. 2022;134(28):e202203700. [Crossref], [Google Scholar]
  • Huang H, Song Y, Li N, et al. One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Appl Catal B Environ. 2019;251:154–161. [Crossref], [Web of Science ®], [Google Scholar]
  • Temur E, Eryiğit M, Öztürk Doğan H, et al. Electrochemical fabrication and reductive doping of electrochemically reduced graphene oxide decorated with TiO2 electrode with highly enhanced photoresponse under visible light. Appl Surf Sci. 2022;581:152150. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhao Y. Platinum supported on metallic compound/nanodiamond. Qinhuangdao: Yanshan University; 2015. [Google Scholar]
  • Wang Y, Zhao Y, Lu R, et al. Nano titania modified nanodiamonds as stable electrocatalyst supports for direct methanol fuel cells. J Electrochem Soc. 2015;162(1):F211–F215. [Crossref], [Web of Science ®], [Google Scholar]
  • Ding D, Zhou B, Fu W, et al. Varied crystalline orientation of anatase TiO2 nanotubes from [101] to [001] promoted by TiF62− ions and their enhanced photoelectrochemical performance. J Mater Sci. 2018;53(5):3332–3340. [Crossref], [Web of Science ®], [Google Scholar]
  • Duan X, Zhao C, Liu W, et al. Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol. Electrochimica Acta. 2017;240:424–436. [Crossref], [Web of Science ®], [Google Scholar]
  • Tan L. Preparation of PbO2/nanodiamond composite electrode and its electrocatalytic properties. Qinhuangdao: Yanshan University; 2010. [Google Scholar]
  • Tran HD, D'Arcy JM, Wang Y, et al. The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. J Mater Chem. 2011;21(11):3534–3550. [Crossref], [Web of Science ®], [Google Scholar]
  • Zang JB, Lu J, Wang YH, et al. Fabrication of core–shell structured MWCNT–Ti(TiC) using a one-pot reaction from a mixture of TiCl3, TiH2, and MWCNTs. Carbon. 2010;48(13):3802–3806. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhao Y, Wang Y, Cheng X, et al. Platinum nanoparticles supported on epitaxial TiC/nanodiamond as an electrocatalyst with enhanced durability for fuel cells. Carbon. 2014;67:409–416. [Crossref], [Web of Science ®], [Google Scholar]
  • Ma M, Cao X, Xu K, et al. Engineering a superhydrophilic TiC/C absorber with multiscale pore network for stable and efficient solar evaporation of high-salinity brine. Mater Today Energy. 2022;26:101009. [Crossref], [Web of Science ®], [Google Scholar]
  • Bian LY, Wang YH, Zang JB, et al. Electrodeposition of Pt nanoparticles on undoped nanodiamond powder for methanol oxidation electrocatalysts. J Electroana Chem. 2010;644(1):85–88. [Crossref], [Web of Science ®], [Google Scholar]
  • Lu R. Study on the electrochemical properties of nanodiamond-based carrier supported PtRu catalyst. Qinhuangdao: Yanshan University; 2011. [Google Scholar]
  • Lu R, Zang JB, Wang YH, et al. Microwave synthesis and properties of nanodiamond supported PtRu electrocatalyst for methanol oxidation. Electrochimica Acta. 2012;60:329–333. [Crossref], [Web of Science ®], [Google Scholar]
  • Gim G, Haider Z, Suh SI, et al. Low-temperature hydrogenation of nanodiamond as a strategy to fabricate sp3-hybridized nanocarbon as a high-performance persulfate activator. Appl Catal, B. 2022;316:121589. [Crossref], [Web of Science ®], [Google Scholar]
  • Parker DM, Lineweaver AJ, Quast AD, et al. Thiol-terminated nanodiamond powders for support of gold nanoparticle catalysts. Diamond Relat Mater. 2021;116:108449. [Crossref], [Web of Science ®], [Google Scholar]
  • Hou Z, Wang Z, Wang P, et al. Near-infrared light-triggered mild-temperature photothermal effect of nanodiamond with functional groups. Diamond Relat Mater. 2022;123:108831. [Crossref], [Web of Science ®], [Google Scholar]
  • Shellaiah M, Sun KW. Diamond-based electrodes for detection of metal ions and anions. Nanomaterials. 2021;12(1):64. [Crossref], [Web of Science ®], [Google Scholar]
  • Chambers A, Prawer S, Ahnood A, et al. Diamond supercapacitors: towards durable, safe, and biocompatible aqueous-based energy storage, 2022. Front Chem. 2022;10:924127. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Ma W, Han Y, Xu C, et al. The mechanism of synergistic effect between iron-carbon microelectrolysis and biodegradation for strengthening phenols removal in coal gasification wastewater treatment. Bioresour Technol. 2019;271:84–90. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Kirberger M, Wong HC, Jiang J, et al. Metal toxicity and opportunistic binding of Pb2+ in proteins. J Inorg Biochem. 2013;125:40–49. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Li N, Xu P, Jing WX, et al. Toxic effects of Pb2+ entering sperm through Ca2+ channels in the freshwater crab sinopotamon henanense. Aquat Toxicol. 2017;192:24–29. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Chen SY, Li Z, Li K, et al. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev. 2021;429:213691. [Crossref], [Web of Science ®], [Google Scholar]
  • Deodath R, Jhingoorie J, Riverol C. Direct methanol fuel cell system reliability analysis. Int J Hydrogen Energy. 2017;42(16):12032–12045. [Crossref], [Web of Science ®], [Google Scholar]
  • Ke Y, Li J, Yuan W, et al. Mangrove root-inspired carbon nanotube film for micro-direct methanol fuel cells. ACS Appl Mater Interfaces. 2022;14(17):19897–19906. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • de Sá MH, Pinto AMFR, Oliveira VB. Passive direct methanol fuel cells as a sustainable alternative to batteries in hearing aid devices – an overview. Int J Hydrogen Energy. 2022;47(37):16552–16567. [Crossref], [Web of Science ®], [Google Scholar]
  • Majumdar D, Bhattacharya SK. Recent developments of methanol electrooxidation using nickel-based nanocatalysts. ChemistrySelect. 2022;7(40):e202201807. [Crossref], [Web of Science ®], [Google Scholar]
  • Chen S, Huang D, Liu D, et al. Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Appl Catal B Environ. 2021;291:120065. [Crossref], [Web of Science ®], [Google Scholar]
  • Guo X, Lin S, Gu J, et al. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: the power of single-atom catalysts. ACS Catal. 2019;9(12):11042–11054. [Crossref], [Web of Science ®], [Google Scholar]
  • Su C, Liu Y, Luo Z, et al. Defects-rich porous carbon microspheres as green electrocatalysts for efficient and stable oxygen-reduction reaction over a wide range of pH values. Chem Eng J. 2021;406:126883. [Crossref], [Web of Science ®], [Google Scholar]
  • Liang X, Dong F, Tang Z, et al. The Pt/g-C3N4-CNS catalyst via in situ synthesis process with excellent performance for methanol electrocatalytic oxidation reaction. New J Chem. 2022;46(7):3121–3129. [Crossref], [Web of Science ®], [Google Scholar]
  • Xu F, Cai S, Lin B, et al. Geometric engineering of porous PtCu nanotubes with ultrahigh methanol oxidation and oxygen reduction capability. Small. 2022;18(17):e2107387. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Liu X, Wang K, Zhou L, et al. Shape-controlled synthesis of concave Pt and willow-like Pt nanocatalysts via electrodeposition with hydrogen adsorption/desorption and investigation of their electrocatalytic performances toward ethanol oxidation reaction. ACS Sustainable Chem Eng. 2020;8(16):6449–6457. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhou KL, Wang C, Wang Z, et al. Seamlessly conductive Co(OH)2 tailored atomically dispersed Pt electrocatalyst with a hierarchical nanostructure for an efficient hydrogen evolution reaction. Energy Environ Sci. 2020;13(9):3082–3092. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhang M, Song Z, Wang Z, et al. Platinum quantum dots enhance electrocatalytic activity of bamboo-like nitrogen doped carbon nanotubes embedding Co-MnO nanoparticles for methanol/ethanol oxidation. J Coll Interface Sci. 2021;590:164–174. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Scofield ME, Koenigsmann C, Wang L, et al. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ Sci. 2015;8(1):350–363. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhang K, Qiu J, Wu J, et al. Morphological tuning engineering of Pt@TiO2/graphene catalysts with optimal active surfaces of support for boosting catalytic performance for methanol oxidation. J Mater Chem A. 2022;10(8):4254–4265. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Zhang C, Xu L, Shan N, et al. Enhanced electrocatalytic activity and durability of Pt particles supported on ordered mesoporous carbon spheres. ACS Catal. 2014;4(6):1926–1930. [Crossref], [Web of Science ®], [Google Scholar]
  • Soares CO, Rodríguez O, Buvat G, et al. Sampled current voltammetry for kinetic studies on materials unsuitable for rotating discs or microelectrodes: application to the oxygen reduction reaction in acidic medium. Electrochimica Acta. 2020;362:136946. [Crossref], [Web of Science ®], [Google Scholar]
  • Liang Z, Guo H, Zhou G, et al. Metal-organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction. Angew Chem Int Ed. 2021;60(15):8472–8476. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Chai L, Zhang L, Wang X, et al. Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon. 2019;146:248–256. [Crossref], [Web of Science ®], [Google Scholar]
  • Sarapuu A, Kallip S, Kasikov A, et al. Electroreduction of oxygen on gold-supported thin Pt films in acid solutions. J Electroana Chem. 2008;624(1-2):144–150. [Crossref], [Web of Science ®], [Google Scholar]
  • Fashedemi OO, Ozoemena KI. Enhanced methanol oxidation and oxygen reduction reactions on palladium-decorated FeCo@Fe/C core-shell nanocatalysts in alkaline medium. Phys Chem Chem Phys. 2013;15(48):20982–20991. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Negahdar L, Zeng F, Palkovits S, et al. Mechanistic aspects of the electrocatalytic oxygen evolution reaction over Ni − Co oxides. ChemElectroChem. 2019;6(22):5588–5595. [Crossref], [Web of Science ®], [Google Scholar]
  • Sarapuu A, Kasikov A, Laaksonen T, et al. Electrochemical reduction of oxygen on thin-film Pt electrodes in acid solutions. Electrochimica Acta. 2008;53(20):5873–5880. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang JX, Uribe FA, Springer TE, et al. Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double tafel slope and fuel cell applications. Faraday Discuss. 2009;140:347–362. [Crossref], [Web of Science ®], [Google Scholar]
  • Shao Y, Yin G, Zhang J, et al. Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution. Electrochimica Acta. 2006;51(26):5853–5857. [Crossref], [Web of Science ®], [Google Scholar]
  • Wei L, Chen Y. Degradation of carbon materials in electrocatalysis. Curr Opin Electrochem. 2022;36:101159. [Crossref], [Web of Science ®], [Google Scholar]
  • Dong L, Zang J, Su J, et al. Nanodiamond/nitrogen-doped graphene (core/shell) as an effective and stable metal-free electrocatalyst for oxygen reduction reaction. Electrochimica Acta. 2015;174:1017–1022. [Crossref], [Web of Science ®], [Google Scholar]
  • Hung TV, Karunagaran R, Tung TT, et al. Nitrogen-doped carbon-coated nanodiamonds for electrocatalytic applications. J Phys D Appl Phys. 2021;54(8):085303. [Crossref], [Web of Science ®], [Google Scholar]
  • Dong L. Cathode electrocatalysis of direct methanol fuel cell based on highly stable core-shell nanoparticles. Qinhuangdao: Yanshan University; 2014. [Google Scholar]
  • Sun X, Su DS, Centi G, et al. Catalysis by hybrid sp2/sp3 nanodiamonds and their role in the design of advanced nanocarbon materials. Chem. Soc. Rev. 2018;47(22):8438–8473. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Wu Y, Zang J, Dong L, et al. High performance and bifunctional cobalt-embedded nitrogen doped carbon/nanodiamond electrocatalysts for oxygen reduction and oxygen evolution reactions in alkaline media. J Power Sources. 2016;305:64–71. [Crossref], [Web of Science ®], [Google Scholar]
  • Lv H, Mu S, Cheng N, et al. Nano-silicon carbide supported catalysts for PEM fuel cells with high electrochemical stability and improved performance by addition of carbon. Appl Catal B Environ. 2010;100(1-2):190–196. [Crossref], [Web of Science ®], [Google Scholar]
  • Sun C, Meng F, Wang J, et al. CoZn-ZIF-derived carbon-supported Cu catalyst for methanol oxidative carbonylation to dimethyl carbonate. New J Chem. 2022;46(16):7452–7463. [Crossref], [Web of Science ®], [Google Scholar]
  • Shang Y, Chen C, Zhang P, et al. Removal of sulfamethoxazole from water via activation of persulfate by Fe3C@NCNTs including mechanism of radical and nonradical process. Chem Eng J. 2019;375:122004. [Crossref], [Web of Science ®], [Google Scholar]
  • Wu G, More KL, Johnston CM, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science. 2011;332(6028):443–447. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Li Q, Zhang K, Wang H, et al. A highly durable CoOx/N-doped graphitized-nano-diamond electrocatalyst for oxygen reduction reaction. Nanotechnology. 2021;32(35):355708. [Crossref], [Web of Science ®], [Google Scholar]
  • Guo Y, Yuan P, Zhang J, et al. Carbon nanosheets containing discrete Co-Nx-by-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-Air batteries. ACS Nano. 2018;12(2):1894–1901. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Liu X, Wang Y, Dong L, et al. One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Electrochimica Acta. 2016;194:161–167. [Crossref], [Web of Science ®], [Google Scholar]
  • Pels JR, Kapteijn F, Moulijn JA, et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon. 1995;33(11):1641–1653. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhong S, Zhou L, Wu L, et al. Nitrogen- and boron-co-doped core–shell carbon nanoparticles as efficient metal-free catalysts for oxygen reduction reactions in microbial fuel cells. J Power Sources. 2014;272:344–350. [Crossref], [Web of Science ®], [Google Scholar]

Related articles