Skip to main content
Research Article

High temperature stability of H-diamond high frequency MOSFET with 300°C grown Al2O3 dielectric

Ma Yuanchen ,
Ren Zeyang ,
Yang Shiqi ,
Su Kai ,
Zhang Jinfeng ,
Yang Xiaoli ,
Ning Xiuxiu ,
Zhang Jincheng ,
Hao Yue
+ 1 authors fewer
Volume 3, Issue 1 (2023)
DOI: 10.1080/26941112.2023.2219687

Abstract

The high frequency H-diamond metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated on single diamond substrate using 300°C ALD grown Al2O3 as gate dielectric and passivation layer. The devices gate length, gate/drain spacing and dielectric thickness are 100 nm, 2 μm, and 10 nm, respectively. The direct-current and frequency characteristics were investigated. The device shows a maximum saturation drain current of −492.6 mA/mm and gm of 135.2 mS/mm. The device shows good high temperature working performance, and the maximum saturation drain current only has a little decreasing of 7.6%. at 200°C. In addition, the device exhibits a maximum cut-off frequency of 36.2 GHz and maximum oscillation frequency of 70.5 GHz. The transient drain current response measurement indicates that the drain current can follow the changing of gate voltage at the frequency of 1 MHz. These results indicate that the Al2O3 dielectric is suitable for using in high frequency or the high-speed switching devices.

Keywords

Diamond; MOSFET; Al2O3; high frequency

References

  • Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science. 2002;297(5587):1–5. [Crossref], [Google Scholar]
  • Achard J, Silva F, Tallaire A, et al. High quality MPACVD diamond single crystal growth: high microwave power density regime. J Phys D: Appl Phys. 2007;40(20):6175–6188. [Crossref], [Google Scholar]
  • Geis MW, Smith HI, Argoitia A, et al. Large‐area mosaic diamond films approaching single‐crystal quality. Appl Phys Lett. 1991;58(22):2485–2487. [Crossref], [Web of Science ®], [Google Scholar]
  • Tallaire A, Achard J, Silva F, et al. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: recent achievements and remaining challenges. CR Phys. 2013;14(2–3):169–184. [Crossref], [Web of Science ®], [Google Scholar]
  • Kato T, Miyake T, Tashima D, et al. Maximum output power control using short-circuit current and open-circuit voltage of a solar panel. Jpn J Appl Phys. 2012;51(10S):10NF08. [Crossref], [Google Scholar]
  • Takeuchi D, Riedel M, Ristein J, et al. Surface band bending and surface conductivity of hydrogenated diamond. Phys Rev B. 2003;68(4):41304. [Google Scholar]
  • Kasu M, Ueda K, Ye H, et al. 2 W∕mm output power density at 1 GHz for diamond FETs. Electron Lett. 2005;41(22):1249–1250. [Crossref], [Web of Science ®], [Google Scholar]
  • Kasu M, Ueda K, Ye H, et al. High RF output power for H-terminated diamond FETs. Diamond Relat Mater. 2006;15(4–8):783–786. [Crossref], [Web of Science ®], [Google Scholar]
  • Hirama K, Sato H, Harada Y, et al. Thermally stable operation of H-Terminated diamond FETs by NO2 adsorption and Al2O3 passivation. IEEE Electron Device Lett. 2012;33(8):1111–1113. [Crossref], [Google Scholar]
  • Kawarada H, Tsuboi H, Naruo T, et al. C-H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. Appl Phys Lett. 2014;105(1):013510. [Crossref], [Google Scholar]
  • Hirama K, Sato H, Harada Y, et al. Epitaxial growth of AlGaN/GaN high-electron mobility transistor structure on diamond (111) surface. Jpn J Appl Phys. 2012;51(9R):090114. [Crossref], [Google Scholar]
  • Liu JW, Liao MY, Imura M, et al. Interfacial band configuration and electrical properties of LaAlO3/Al2O3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors. J Appl Phys. 2013;114(8):084108. [Crossref], [Google Scholar]
  • Wang Y-F, Chang X, Zhang X, et al. Normally-off hydrogen-terminated diamond field-effect transistor with Al2O3 dielectric layer formed by thermal oxidation of Al. Diamond Relat Mater. 2018;81:113–117. [Crossref], [Google Scholar]
  • Ren Z, Lv D, Xu J, et al. High temperature (300°C) ALD grown Al2O3 on hydrogen terminated diamond: band offset and electrical properties of the MOSFETs. Appl Phys Lett. 2020;116(1):013503. [Crossref], [Google Scholar]
  • Ren Z, Zhang J, Zhang J, et al. Diamond field effect transistors with MoO3 gate dielectric. IEEE Electron Device Lett. 2017;38(6):786–789. [Crossref], [Web of Science ®], [Google Scholar]
  • Ren Z, Zhang J, Zhang J, et al. Polycrystalline diamond RF MOSFET with MoO3 gate dielectric. AIP Adv. 2017;7(12):125302. [Crossref], [Google Scholar]
  • Vardi A, Tordjman M, del Alamo JA, et al. A diamond: h/MoO3 MOSFET. IEEE Electron Device Lett. 2014;35(12):1320–1322. [Crossref], [Google Scholar]
  • Liu JW, Liao MY, Imura M, et al. Normally-off HfO2 -gated diamond field effect transistors. Appl. Phys. Lett. 2013;103(9):092905. [Crossref], [Web of Science ®], [Google Scholar]
  • Verona C, Ciccognani W, Colangeli S, et al. V2O5 MISFETs on H-terminated diamond. IEEE Trans Electron Devices. 2016;63(12):4647–4653. [Crossref], [Web of Science ®], [Google Scholar]
  • Tordjman M, Weinfeld K, Kalish R. Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3. Appl Phys Lett. 2017;111(11):111601. [Crossref], [Google Scholar]
  • Liu JW, Oosato H, Liao MY, et al. Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator. Appl Phys Lett. 2017;110(20):203502. [Crossref], [Web of Science ®], [Google Scholar]
  • Kitabayashi Y, Kudo T, Tsuboi H, et al. Normally-Off C–H diamond MOSFETs with partial C–O channel achieving 2-kV breakdown voltage. IEEE Electron Device Lett. 2017;38(3):363–366. [Crossref], [Web of Science ®], [Google Scholar]
  • Yu X, Zhou J, Qi C, et al. A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz. IEEE Electron Device Lett. 2018;39(9):1373–1376. [Crossref], [Web of Science ®], [Google Scholar]
  • Ueda K, Kasu M, Yamauchi Y, et al. Diamond FET using high-quality polycrystalline diamond with fT/ of 45 GHz and fmax of 120 GHz. IEEE Electron Device Lett. 2006;27(7):570–572. [Crossref], [Web of Science ®], [Google Scholar]
  • Yu C, Zhou CJ, Guo JC, et al. Hydrogen-terminated diamond MOSFETs on (0 0 1) single crystal diamond with state of the art high RF power density. Funct Diamond. 2022;2(1):64–70. [Taylor & Francis Online], [Google Scholar]
  • Imanishi S, Kudara K, Ishiwata H, et al. Drain Current Density Over 1.1 A/mm in 2D Hole Gas Diamond MOSFETs With Regrown p++-Diamond Ohmic Contacts. IEEE Electron Device Lett. 2021;42(2):204–207. [Crossref], [Google Scholar]
  • Daicho A, Saito T, Kurihara S, et al. High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al2O3. J Appl Phys. 2014;115(22):223711. [Google Scholar]
  • Kawarada H, Yamada T, Xu D, et al. 28th ISPSD, Prague, Czech Republic, 2016. p. 483. [Google Scholar]
  • Ren Z, Yuan G, Zhang J, et al. Hydrogen-terminated polycrystalline diamond MOSFETs with Al2O3 passivation layers grown by atomic layer deposition at different temperatures. AIP Adv. 2018;8(6):065026. [Crossref], [Google Scholar]
  • Ren Z, He Q, Xu J, et al. Low on-resistance H-diamond MOSFETs with 300°C ALD-Al2O3 gate dielectric. IEEE Access. 2020;8:50465–50471. [Crossref], [Google Scholar]
  • Ren Z, Ma Y, Yang S, et al. High frequency single crystalline diamond MOSFET with high temperature (300 ◦ C) ALD grown Al2O3 dielectric. Funct Diamond. 2023;49:106517. [Google Scholar]
  • Imanishi S, Horikawa K, Oi N, et al. 3.8 W/mm RF power density for ALD Al2O3-based Two-Dimensional hole gas diamond MOSFET operating at saturation velocity. IEEE Electron Device Lett. 2019;40(2):279–282. [Crossref], [Web of Science ®], [Google Scholar]
550
Favorite
Share

Related articles