Skip to main content

Heteroepitaxy of diamond semiconductor on iridium: a review

Weihua Wang,Benjian Liu,Leining Zhang,Jiecai Han,Kang Liu,Bing Dai,Jiaqi Zhu
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2162348

Abstract

As one of the representatives of carbon-based semiconductors, diamond is called the “Mount Everest” of electronic materials. To maximize its properties and realize its industrial applications, the fabrication of wafer-scale high-quality diamonds is critical. To date, heteroepitaxy is considered as a promising method for the growth of diamond wafers with considerable development. In this review, fundamentals of diamond heteroepitaxy is firstly introduced from several perspectives including nucleation thermodynamics and kinetic, nucleation process at the atomic level, as well as the interplay between the epitaxial film and substrate. Second, the bias enhanced nucleation (BEN) method is reviewed, including BEN setup, BEN process window, nucleation phenomenology (mainly on Iridium), nucleation mechanism by ion bombardment, and large-scale nucleation realization. Third, the following textured growth process is presented, as well as grain boundary annihilation, and dislocation and stress reduction technologies. Fourth, the applications of diamonds in electronic devices are studied, showing its excellent performances in the future power and electronic devices. Finally, prospects in this field are proposed from several aspects.

Keywords

Diamond wafer; heteroepitaxy; large size; bias enhanced nucleation; textured growth; electronic applications

References

  • Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics. Nat Electron. 2018;1(8):442–450.
  • Gonzalez-Zalba MF, de Franceschi S, Charbon E, et al. Scaling silicon-based quantum computing using CMOS technology. Nat Electron. 2021;4(12):872–884.
  • Ayers JE, Kujofsa T, Rango P, et al. Heteroepitaxy of semiconductors: theory, growth, and characterization. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis Group; 2017.
  • Wellmann P, Ohtani N, Rupp R, editors. Wide bandgap semiconductors for power electronics. 1st ed. Weinheim: Wiley; 2021.
  • Takahashi K, Yoshikawa A, Sandhu A, editors. Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices. Berlin: Springer; 2007.
  • Zheng Y, Wei J, Liu J, et al. Carbon materials: the burgeoning promise in electronics. Int J Miner Metall Mater. 2022;29(3):404–423.
  • Xu M, Wang D, Fu K, et al. A review of ultrawide bandgap materials: properties, synthesis, and devices. Oxford Open Mater Sci 2022;2(1):itac004.
  • Cui G, Yi Z, Su F, et al. A DFT study of the effect of stacking on the quantum capacitance of bilayer graphene materials. New Carbon Mater. 2021;36(6):1062–1070.
  • Avouris P, Dimitrakopoulos C. Graphene: synthesis and applications. Mater Today 2012;15(3):86–97.
  • Hu L, Hecht DS, Grüner G. Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev. 2010;110(10):5790–5844.
  • Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J Phys D: Appl Phys. 2020;53(9):093001.
  • Sang L. Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices. Funct Diam. 2021;1(1):174–188.
  • Lu W, Li J, Miao J, et al. Application of high-thermal-conductivity diamond for space phased array antenna. Funct Diam. 2021;1(1):189–196.
  • Inyushkin AV, Taldenkov AN, Ralchenko VG, et al. Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B. 2018;97(14):144305.
  • Akimoto I, Handa Y, Fukai K. High carrier mobility in ultrapure diamond measured by time-resolved cyclotron resonance. Appl Phys Lett. 2014;105:032102.
  • Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science. 2002;297(5587):1670–1672.
  • Teraji T, Koizumi S, Koide Y, et al. Electric field breakdown of lateral Schottky diodes of diamond. Jpn J Appl Phys. 2007;46(9):L196–L198.
  • Wort CJH, Balmer RS. Diamond as an electronic material. Mater Today 2008;11(1–2):22–28.
  • Wang Y, Wang W-H, Yang S-L, et al. Two extreme crystal size scales of diamonds, large single crystal and nanocrystal diamonds: synthesis, properties and their mutual transformation. New Carbon Mater. 2021;36(3):512–526.
  • May PW. Diamond thin films: a 21st-century material. Philos Trans R Soc Lond Ser A: Math Phys Eng Sci. 2000;358(1766):473–495.
  • Li S, Yu S, Feng Y. Progress in and prospects for electrical insulating materials. High Voltage. 2016;1(3):122–129.
  • Zhang Z-F, Lin C-N, Yang X, et al. Wafer-sized polycrystalline diamond photodetector planar arrays for solar-blind imaging. J Mater Chem C. 2022;10(16):6488–6496.
  • Berdermann E, Afanaciev K, Ciobanu M, et al. Progress in detector properties of heteroepitaxial diamond grown by chemical vapor deposition on Ir/YSZ/Si(001) wafers. Diam Relat Mater. 2019;97:107420.
  • Looi HJ, Jackman RB, Foord JS. High carrier mobility in polycrystalline thin film diamond. Appl Phys Lett. 1998;72(3):353–355.
  • Mikawa Y, Ishinabe T, Kagamitani Y, et al. Recent progress of large size and low dislocation bulk GaN growth. In: Morkoç H, Fujioka H, Schwarz UT, editors. Gallium nitride materials and devices XV; San Francisco (CA): SPIE; 2020. p. 1.
  • Mastro MA, Kuramata A, Calkins J, et al. Perspective—opportunities and future directions for Ga2O3. ECS J Solid State Sci Technol. 2017;6(5):P356–P359.
  • Kimoto T. Bulk and epitaxial growth of silicon carbide. Prog Cryst Growth Charact Mater. 2016;62(2):329–351.
  • Kim M, Seo J-H, Singisetti U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond. J Mater Chem C. 2017;5(33):8338–8354.
  • Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017;7(1):44462.
  • Kim S-W, Takaya R, Hirano S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (112¯0) misoriented substrate by step-flow mode. Appl Phys Express. 2021;14(11):115501.
  • Kim S-W, Kawamata Y, Takaya R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (112¯0) sapphire substrate. Appl Phys Lett. 2020;117(20):202102.
  • Kaminski N. State of the art and the future of wide band-gap devices. In: 2009 13th European Conference on Power Electronics and Applications; Barcelona, Spain: IEEE; 2009. p. 1–9.
  • Muzyka K, Sun J, Fereja TH, et al. Boron-doped diamond: current progress and challenges in view of ­electroanalytical applications. Anal Methods. 2019;11(4):397–414.
  • Chen G, Wang W, Lin F, et al. Electrical characteristics of diamond MOSFET with 2DHG on a heteroepitaxial diamond substrate. Materials. 2022;15(7):2557.
  • Liu B, Bi T, Fu Y, et al. MOSFETs on (110) C-H diamond: ALD Al2O3/diamond interface analysis and high performance normally-OFF operation reali­zation. IEEE Trans Electron Devices. 2022;69(3):949–955.
  • Alhasani R, Yabe T, Iyama Y, et al. An enhanced two-dimensional hole gas (2DHG) C-H diamond with positive surface charge model for advanced normally-off MOSFET devices. Sci Rep. 2022;12(1):4203.
  • Kudara K, Imanishi S, Hiraiwa A, et al. High output power density of 2DHG diamond MOSFETs with thick ALD-Al2O3. IEEE Trans Electron Devices. 2021;68(8):3942–3949.
  • Yu C, Zhou C, Guo J, et al. Hydrogen-terminated diamond MOSFETs on (0 0 1) single crystal diamond with state of the art high RF power density. Funct Diam. 2022;2(1):64–70.
  • Kawarada H. High-current metal oxide semiconductor field-effect transistors on H-terminated diamond surfaces and their high-frequency operation. Jpn J Appl Phys. 2012;51:090111.
  • Kawarada H. Hydrogen-terminated diamond surfaces and interfaces. Surf Sci Rep. 1996;26(7):205–206.
  • Liu B, Liu K, Zhao J, et al. Enhanced performance of diamond Schottky nuclear batteries by using ZnO as electron transport layer. Diam Relat Mater. 2020;109:108026.
  • Liu B, Zhang S, Ralchenko V, et al. High temperature operation of logic and gate based on diamond Schottky diodes fabricated by selective growth method. Carbon. 2022;197:292–300.
  • Liu K, Wang W, Dai B, et al. Impact of UV spot position on forward and reverse photocurrent symmetry in a gold-diamond-gold detector. Appl Phys Lett. 2018;113(2):023501.
  • Xue J, Liu K, Liu B, et al. UV-blue photodetectors based on n-SnOx/p-diamond heterojunctions. Mater Lett. 2019;257:126621.
  • Liao M. Progress in semiconductor diamond photodetectors and MEMS sensors. Funct Diam. 2021;1(1):29–46.
  • Shimaoka T, Koizumi S, Kaneko JH, et al. Recent progress in diamond radiation detectors. Funct Diam. 2021;1(1):205–220.
  • Arnault J-C, Saada S, Ralchenko V. Chemical vapor deposition single‐crystal diamond: a review. Phys Stat Sol Rapid Res Lett. 2022;16(1):2100354.
  • Silva F, Achard J, Brinza O, et al. High quality, large surface area, homoepitaxial MPACVD diamond growth. Diam Relat Mater. 2009;18(5–8):683–697.
  • Tallaire A, Achard J, Boussadi A, et al. High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates. Diam Relat Mater. 2014;41:34–40.
  • Widmann CJ, Hetzl M, Drieschner S, et al. Homoepitaxial growth of high quality (111)-oriented single crystalline diamond. Diam Relat Mater. 2017;72:41–46.
  • Yamada H, Shimaoka T. Study of horizontal and vertical uniformity of B-doped layer on mosaic single crystal diamond wafers by using hot-filament ­chemical vapor deposition. Funct Diam. 2022;2(1):46–52.
  • Shu G, Ralchenko VG, Bolshakov AP, et al. Evolution of surface relief of epitaxial diamond films upon growth resumption by microwave plasma chemical vapor deposition. CrystEngComm 2020;22(12):2138–2146.
  • Li Y, Liu X, Shu G, et al. Thinning strategy of substrates for diamond growth with reduced PCD rim: design and experiments. Diam Relat Mater. 2020;101:107574.
  • Bolshakov AP, Ralchenko VG, Shu G, et al. Single crystal diamond growth by MPCVD at subatmospheric pressures. Mater Today Commun. 2020;25:101635.
  • Huang Y, Chen L, Shao S, et al. The 7-in. freestanding diamond thermal conductive film fabricated by DC arc plasma jet CVD with multi-stage magnetic fields. Diam Relat Mater. 2022;122:108812.
  • Schwander M, Partes K. A review of diamond synthesis by CVD processes. Diam Relat Mater. 2011;20(9):1287–1301.
  • Nad S, Charris A, Asmussen J. MPACVD growth of single crystalline diamond substrates with PCD rimless and expanding surfaces. Appl Phys Lett. 2016;109(16):162103.
  • Wang X, Duan P, Cao Z, et al. Surface morphology of the interface junction of CVD mosaic single-crystal diamond. Materials. 2019;13(1):91.
  • Muchnikov AB, Radishev DB, Vikharev AL, et al. Characterization of interfaces in mosaic CVD diamond crystal. J Cryst Growth 2016;442:62–67.
  • Janssen G, Giling LJ. “Mosaic” growth of diamond. Diam Relat Mater. 1995;4(7):1025–1031.
  • Fischer M, Freund AK, Gsell S, et al. Structural analysis of diamond mosaic crystals for neutron monochromators using synchrotron radiation. Diam Relat Mater. 2013;37:41–49.
  • Matsushita A, Fujimori N, Tsuchida Y, et al. Evaluation of diamond mosaic wafer crystallinity by electron backscatter diffraction. Diam Relat Mater. 2020;101:107558.
  • Yamada H, Chayahara A, Mokuno Y, et al. Fabrication of 1 inch mosaic crystal diamond wafers. Appl Phys Express. 2010;3(5):051301.
  • Yamada H, Chayahara A, Mokuno Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond. Appl Phys Lett. 2014;104(10):102110.
  • Shu G, Dai B, Ralchenko VG, et al. Epitaxial growth of mosaic diamond: mapping of stress and defects in crystal junction with a confocal Raman spectroscopy. J Cryst Growth 2017;463:19–26.
  • Mokuno Y, Chayahara A, Yamada H, et al. Improving purity and size of single-crystal diamond plates produced by high-rate CVD growth and lift-off process using ion implantation. Diam Relat Mater. 2009;18(10):1258–1261.
  • Drumm VS, Alves ADC, Fairchild BA, et al. Surface damage on diamond membranes fabricated by ion implantation and lift-off. Appl Phys Lett. 2011;98(23):231904.
  • Mokuno Y, Chayahara A, Yamada H, et al. Improvements of crystallinity of single crystal diamond plates produced by lift-off process using ion implantation. Diam Relat Mater. 2010;19(2–3):128–130.
  • Mokuno Y, Chayahara A, Yamada H. Synthesis of large single crystal diamond plates by high rate homoepitaxial growth using microwave plasma CVD and lift-off process. Diam Relat Mater. 2008;17(4–5):415–418.
  • Mokuno Y, Kato Y, Tsubouchi N, et al. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process. Appl Phys Lett. 2014;104(25):252109.
  • Yang J, Wang CF, Hu EL, et al. Lift-off process to get free-standing high quality single crystal diamond films and suspended single crystal diamond devices. MRS Proc. 2006;956:0956-J17-01.
  • Lutsko JF. How crystals form: a theory of nucleation pathways. Sci Adv. 2019;5(4):eaav7399.
  • Karthika S, Radhakrishnan TK, Kalaichelvi P. A review of classical and nonclassical nucleation theories. Cryst Growth Des. 2016;16(11):6663–6681.
  • Turnbull D. Kinetics of heterogeneous nucleation. J Chem Phys. 1950;18(2):198–203.
  • Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17(1):71–73.
  • Chen C-Y, Chen L-H, Lee Y-L. Nucleation and growth of clusters on heterogeneous surfaces. Int Commun Heat Mass Transf. 2000;27(5):705–717.
  • Chen L-H, Chen C-Y, Lee Y-L. Nucleation and growth of clusters in the process of vapor deposition. Surf Sci. 1999;429(1–3):150–160.
  • Spitzmüller J, Fehrenbacher M, Rauscher H, et al. Nucleation and growth kinetics in semiconductor chemical vapor deposition. Phys Rev B. 2001;63(4):041302.
  • Greene JE. Thin film nucleation, growth, and microstructural evolution: an atomic scale view. In: Martin PM, editor. Handbook of deposition technologies for films and coatings. 3rd ed.; Oxford: Elsevier; 2010. p. 554–620.
  • Matthews JW. Epitaxial growth. New York: Academic Press; 1975.
  • Chavanne A, Arnault JC, Barjon J, et al. Effect of bias voltage on diamond nucleation on iridium during BEN. AIP Conf Proc. 2010;1292(1):137–140.
  • Stöckel R, Stammler M, Janischowsky K, et al. Diamond nucleation under bias conditions. J Appl Phys. 1998;83(1):531–539.
  • Bakti Utama MI, Zhang Q, Zhang J, et al. Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy. Nanoscale. 2013;5(9):3570.
  • Koma A. Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films. 1992;216(1):72–76.
  • Lifshitz Y, Köhler T, Frauenheim T, et al. The mechanism of diamond nucleation from energetic species. Science. 2002;297(5586):1531–1533.
  • Liu L, Siegel DA, Chen W, et al. Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy. Proc Natl Acad Sci USA. 2014;111(47):16670–16675.
  • Wang W, Yang S, Han J, et al. Role of surface chemistry in determining the heteroepitaxial growth of Ir films on a-plane α-Al2O3 single crystals. Surf Interface 2022;32:102172.
  • Matthews J, Blakeslee AE. Defects in epitaxial multilayers I. Misfit dislocations. J Cryst Growth 1974;27:118–125.
  • Wang W, Wang Y, Shu G, et al. Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth. New Carbon Mater. 2021;36(6):1034–1045.
  • Arnault JC, Lee KH, Delchevalrie J, et al. Epitaxial diamond on Ir/SrTiO3/Si (001): from sequential material characterizations to fabrication of lateral Schottky diodes. Diam Relat Mater. 2020;105:107768.
  • Wang W, Liu K, Yang S, et al. Comparison of heteroepitaxial diamond nucleation and growth on roughened and flat Ir/SrTiO3 substrates. Vacuum. 2022;204:111374.
  • Wang Y, Wang W, Shu G, et al. Virtues of Ir(1 0 0) substrate on diamond epitaxial growth: first-principle calculation and XPS study. J Cryst Growth. 2021;560–561:126047.
  • Kamrani Moghaddam L, Ramezani Paschepari S, Zaimy MA, et al. Surface energies of elemental crystals. Sci Data 2016;3:160080.
  • Wen Y-N, Zhang J-M. Surface energy calculation of the fcc metals by using the MAEAM. Solid State Commun. 2007;144(3–4):163–167.
  • Yin W-J, Chen Y-P, Xie Y-E, et al. A low-surface energy carbon allotrope: the case for bcc-C6. Phys Chem Chem Phys. 2015;17(21):14083–14087.
  • Fu B. Surface energy of diamond cubic crystals and anisotropy analysis revealed by empirical electron surface models. Adv Mater. 2019;8(2):61–69.
  • Tachibana T, Yokota Y, Miyata K, et al. Heteroepitaxial diamond growth process on platinum (111). Diam Relat Mater. 1997;6(2–4):266–271.
  • Shintani Y. Growth of highly (111)-oriented, highly coalesced diamond films on platinum (111) surface: a possibility of heteroepitaxy. J Mater Res. 1996;11(12):2955–2956.
  • Bauer T, Schreck M, Gsell S, et al. Epitaxial rhenium buffer layers on Al2O3(0001): a substrate for the deposition of (111)-oriented heteroepitaxial diamond films. Phys Stat Sol (a). 2003;199(1):19–26.
  • Fei W, Wei K, Morishita A, et al. Local initial heteroepitaxial growth of diamond (111) on Ru (0001)/c-sapphire by antenna-edge-type microwave plasma chemical vapor deposition. Appl Phys Lett. 2020;117(11):112102.
  • Wang W, Dai B, Shu G, et al. Competition between diamond nucleation and growth under bias voltage by microwave plasma chemical vapor deposition. CrystEngComm. 2021;23(44):7731–7738.
  • Wang W, Yang S, Shu G, et al. Analysis of surface microstructures formed on Ir substrate under different bias conditions by microwave plasma chemical vapor deposition. Phys Stat Sol (a) 2022;219(13):2100810.
  • Golding B, Bednarski-Meinke C, Dai Z. Diamond heteroepitaxy: pattern formation and mechanisms. Diam Relat Mater. 2004;13(4–8):545–551.
  • Bauer T, Gsell S, Hörmann F, et al. Surface modifications and first stages of heteroepitaxial diamond growth on iridium. Diam Relat Mater. 2004;13(2):335–341.
  • Sawabe A, Fukuda H, Suzuki K. Heteroepitaxial growth of diamond. Electron Commun Jpn Pt II. 1998;81(7):28–37.
  • Yaita J, Suto T, Natal M-R, et al. In situ bias current monitoring of nucleation for epitaxial diamonds on 3C-SiC/Si substrates. Diam Relat Mater. 2018;88:158–162.
  • Yaita J, Natal M, Saddow SE, et al. Influence of high-power density plasma on heteroepitaxial diamond nucleation on 3C-SiC surface. Appl Phys Express. 2017;10(4):045502.
  • Yaita J, Tsuji T, Hatano M, et al. Preferentially aligned nitrogen-vacancy centers in heteroepitaxial (111) diamonds on Si substrates via 3C-SiC intermediate layers. Appl Phys Express. 2018;11(4):045501.
  • Schreck M, Thürer K-H, Stritzker B. Limitations of the process window for the bias enhanced nucleation of heteroepitaxial diamond films on silicon in the time domain. J Appl Phys. 1997;81(7):3092–3095.
  • Thürer K-H, Schreck M, Stritzker B. Limiting processes for diamond epitaxial alignment on silicon. Phys Rev B. 1998;57(24):15454–15464.
  • Jiang X, Jia CL. Direct local epitaxy of diamond on Si(100) and surface-roughening-induced crystal misorientation. Phys Rev Lett. 2000;84(16):3658–3661.
  • Jiang X, Schiffmann K, Klages C-P, et al. Coalescence and overgrowth of diamond grains for improved heteroepitaxy on silicon (001). J Appl Phys. 1998;83(5):2511–2518.
  • Jiang X, Zhang WJ, Klages C-P. Effects of ion bombardment on the nucleation and growth of diamond films. Phys Rev B. 1998;58(11):7064–7075.
  • Chavanne A, Arnault J-C, Barjon J, et al. Bias-enhanced nucleation of diamond on iridium: a comprehensive study of the first stages by sequential surface analysis. Surf Sci. 2011;605(5–6):564–569.
  • Schreck M, Stritzker B. Nucleation and growth of heteroepitaxial diamond films on silicon. Phys Stat Sol (a). 1996;154(1):197–217.
  • Delchevalrie J, Saada S, Bachelet R, et al. Spectroscopic ellipsometry: a sensitive tool to monitor domains formation during the bias enhanced nucleation of heteroepitaxial diamond. Diam Relat Mater. 2021;112:108246.
  • Gsell S, Schreck M, Benstetter G, et al. Combined AFM–SEM study of the diamond nucleation layer on Ir(001). Diam Relat Mater. 2007;16(4–7):665–670.
  • Ohtsuka K, Suzuki K, Sawabe A, et al. Epitaxial growth of diamond on iridium. Jpn J Appl Phys. 1996;35(8B):L1072–L1074.
  • Wang BB, Wang WL, Liao KJ, et al. Experimental and theoretical studies of diamond nucleation on silicon by biased hot filament chemical vapor deposition. Phys Rev B. 2001;63(8):085412.
  • Janischowsky K, Ebert W, Kohn E. Bias enhanced nucleation of diamond on silicon (100) in a HFCVD system. Diam Relat Mater. 2003;12(3–7):336–339.
  • Arnault JC, Pecoraro S, Le Normand F, et al. Comparison of classical and BEN nucleation studied on thinned Si (1 1 1) samples: a HRTEM study. Appl Surf Sci. 2003;212–213:912–919.
  • Regmi M, More K, Eres G. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition. Diam Relat Mater. 2012;23:28–33.
  • Fujisaki T, Tachiki M, Taniyama N, et al. Initial growth of heteroepitaxial diamond on Ir(001)/MgO(001) substrates using antenna-edge-type microwave plasma assisted chemical vapor deposition. Diam Relat Mater. 2003;12(3–7):246–250.
  • Wei Q, Niu G, Wang R, et al. Heteroepitaxy of single crystal diamond on Ir buffered KTaO3(001) substrates. Appl Phys Lett. 2021;119(9):092104.
  • Wei Q, Lin F, Wang R, et al. Heteroepitaxy growth of single crystal diamond on Ir/Pd/Al2O3(112¯0) substrate. Mater Lett. 2021;303:130483.
  • Gallheber B-C, Fischer M, Mayr M, et al. Growth, stress, and defects of heteroepitaxial diamond on Ir/YSZ/Si(111). J Appl Phys. 2018;123(22):225302.
  • Schreck M, Bauer T, Gsell S, et al. Domain formation in diamond nucleation on iridium. Diam Relat Mater. 2003;12(3–7):262–267.
  • Brescia R, Schreck M, Gsell S, et al. Transmission electron microscopy study of the very early stages of diamond growth on iridium. Diam Relat Mater. 2008;17(7–10):1045–1050.
  • Vaissiere N, Saada S, Bouttemy M, et al. Heteroepitaxial diamond on iridium: new insights on domain formation. Diam Relat Mater. 2013;36:16–25.
  • Schreck M, Hörmann F, Gsell S, et al. Transmission electron microscopy study of the diamond nucleation layer on iridium. Diam Relat Mater. 2006;15(4–8):460–464.
  • Gsell S, Berner S, Brugger T, et al. Comparative electron diffraction study of the diamond nucleation layer on Ir(001). Diam Relat Mater. 2008;17(7–10):1029–1034.
  • Schreck M, Gsell S, Brescia R, et al. Diamond nucleation on iridium: local variations of structure and density within the BEN layer. Diam Relat Mater. 2009;18(2–3):107–112.
  • Bernhard P, Ziethen C, Schoenhense G, et al. Structural properties of the diamond nucleation layer on iridium analyzed by laterally resolved X-ray absorption spectroscopy. Jpn J Appl Phys. 2006;45(36):L984–L986.
  • Lavini F, Rejhon M, Riedo E. Two-dimensional diamonds from sp2-to-sp3 phase transitions. Nat Rev Mater. 2022;7(10):814–832.
  • Yugo S, Kanai T, Kimura T, et al. Generation of diamond nuclei by electric field in plasma chemical vapor deposition. Appl Phys Lett. 1991;58(10):1036–1038.
  • Butler JE, Mankelevich YA, Cheesman A, et al. Understanding the chemical vapor deposition of diamond: recent progress. J Phys Condens Matter. 2009;21(36):364201.
  • Gracio JJ, Fan QH, Madaleno JC. Diamond growth by chemical vapour deposition. J Phys D: Appl Phys. 2010;43(37):374017.
  • Mankelevich Y, May PW. New insights into the mechanism of CVD diamond growth: single crystal diamond in MW PECVD reactors. Diam Relat Mater. 2008;17(7–10):1021–1028.
  • Lifshitz Y, Kasi SR, Rabalais JW, et al. Subplantation model for film growth from hyperthermal species. Phys Rev B. 1990;41(15):10468–10480.
  • Lifshitz Y, Kasi SR, Rabalais JW. Subplantation model for film growth from hyperthermal species: application to diamond. Phys Rev Lett. 1989;62(11):1290–1293.
  • Yao Y, Liao M, Köhler T, et al. Diamond nucleation by energetic pure carbon bombardment. Phys Rev B. 2005;72(3):035402.
  • Yao Y, Liao MY, Wang ZG, et al. Nucleation of diamond by pure carbon ion bombardment—a transmission electron microscopy study. Appl Phys Lett. 2005;87(6):063103.
  • Lifshitz Y, Meng XM, Lee ST, et al. Visualization of diamond nucleation and growth from energetic species. Phys Rev Lett. 2004;93(5):056101.
  • Koehler JS, Seitz F. Steady-state processes not involving lattice re-arrangement. Introductory paper. Discuss Faraday Soc. 1957;23:85–91.
  • Weiler M, Robertson J, Sattel S, et al. Formation of highly tetrahedral amorphous hydrogenated carbon, ta-C: H. Diam Relat Mater 1995;4(4):268–271.
  • Kim Y-K, Han Y-S, Lee J-Y. The effects of a negative bias on the nucleation of oriented diamond on Si. Diam Relat Mater. 1998;7(1):96–105.
  • Kim Y, Lee K, Lee J. Deposition of heteroepitaxial diamond film on (100) silicon in the dense plasma. Appl Phys Lett. 1996;68(6):756–758.
  • Chiang MJ, Hon MH. Optical emission spectroscopy study of positive direct current bias enhanced diamond nucleation. Thin Solid Films 2008;516(15):4765–4770.
  • Nose K, Suwa T, Ikejiri K, et al. Ion acceleration in bias-enhanced nucleation of diamond at relatively high pressures. Diam Relat Mater. 2011;20(5–6):687–692.
  • Whitfield MD, Rodway D, Savage JA, et al. Biased enhanced nucleation of diamond on metals: an OES and electrical investigation. Diam Relat Mater. 1997;6(5–7):658–663.
  • Dong J, Zhang L, Dai X, et al. The epitaxy of 2D materials growth. Nat Commun. 2020;11(1):5862.
  • Li YF, An XM, Liu XC, et al. A 915 MHz/75 kW cylindrical cavity type microwave plasma chemical vapor deposition reactor with a ladder-shaped circumferential antenna developed for growing large area diamond films. Diam Relat Mater. 2017;78:67–72.
  • Yan X, Zhao L, Xu W, et al. Design of an edge tapered 915 MHz/TM021 microwave plasma reactor by numerical analysis. AIP Adv. 2021;11(3):035321.
  • Liang Q, Yan C, Lai J, et al. Large area single-crystal diamond synthesis by 915 MHz microwave plasma-assisted chemical vapor deposition. Cryst Growth Des. 2014;14(7):3234–3238.
  • Yoshikawa T, Herrling D, Meyer F, et al. Influence of substrate holder configurations on bias enhanced nucleation area for diamond heteroepitaxy: toward wafer-scale single-crystalline diamond synthesis. J Vac Sci Technol B 2019;37(2):021207.
  • Prywer J. Explanation of some peculiarities of crystal morphology deduced from the BFDH law. J Cryst Growth. 2004;270(3–4):699–710.
  • Donnay GDH, Harker D. A new law of crystal morphology extending the law of Bravais. Am Mineral. 1937;22:446.
  • Silva F, Bonnin X, Achard J, et al. Geometric modeling of homoepitaxial CVD diamond growth: I. The {100}{111}{110}{113} system. J Cryst Growth. 2008;310(1):187–203.
  • Chavanne A, Barjon J, Vilquin B, et al. Surface investigations on different nucleation pathways for diamond heteroepitaxial growth on iridium. Diam Relat Mater. 2012;22:52–58.
  • Ando Y, Kamano T, Suzuki K, et al. Epitaxial lateral overgrowth of diamonds on iridium by patterned nucleation and growth method. Jpn J Appl Phys. 2012;51:090101.
  • Aida H, Oshima R, Ouchi T, et al. In-situ reflectance interferometry of heteroepitaxial diamond growth. Diam Relat Mater. 2021;113:108253.
  • Schreck M, Schury A, Hörmann F, et al. Mosaicity reduction during growth of heteroepitaxial diamond films on iridium buffer layers: experimental results and numerical simulations. J Appl Phys. 2002;91(2):676–685.
  • Ding L-P, Shao P, Ding F. Mechanism of 2D materials’ seamless coalescence on a liquid substrate. ACS Nano. 2021;15(12):19387–19393.
  • Dong J, Geng D, Liu F, et al. Formation of twinned graphene polycrystals. Angew Chem Int Ed. 2019;58(23):7723–7727.
  • Michler J, von Kaenel Y, Stiegler J, et al. Comple­mentary application of electron microscopy and micro-Raman spectroscopy for microstructure, stress, and bonding defect investigation of heteroepitaxial chemical vapor deposited diamond films. J Appl Phys. 1998;83(1):187–197.
  • Zhang L, Dong J, Ding F. Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem Rev. 2021;121(11):6321–6372.
  • Gallheber B-C, Klein O, Fischer M, et al. Propagation of threading dislocations in heteroepitaxial diamond films with (111) orientation and their role in the formation of intrinsic stress. J Appl Phys. 2017;121(22):225301.
  • Klein O, Mayr M, Fischer M, et al. Propagation and annihilation of threading dislocations during off-axis growth of heteroepitaxial diamond films. Diam Relat Mater. 2016;65:53–58.
  • Schreck M, Mayr M, Klein O, et al. Multiple role of dislocations in the heteroepitaxial growth of diamond: a brief review: multiple role of dislocations in the heteroepitaxial growth of diamond. Phys Stat Sol (a). 2016;213(8):2028–2035.
  • Liu T, Pinto H, Brito P, et al. Residual stress analysis in chemical-vapor-deposition diamond films. Appl Phys Lett. 2009;94(20):201902.
  • Kasu M, Takaya R, Kim S-W. Growth of high-quality inch-diameter heteroepitaxial diamond layers on sapphire substrates in comparison to MgO substrates. Diam Relat Mater. 2022;126:109086.
  • Kuo CT, Lin CR, Lien HM. Origins of the residual stress in CVD diamond films. Thin Solid Films 1996;290–291:254–259.
  • Abadias G, Chason E, Keckes J, et al. Stress in thin films and coatings: current status, challenges, and prospects. J Vac Sci Technol A 2018;36(2):020801.
  • Schreck M, Roll H, Michler J, et al. Stress distribution in thin heteroepitaxial diamond films on Ir/SrTiO3 studied by X-ray diffraction, Raman spectroscopy, and finite element simulations. J Appl Phys. 2000;88(5):2456–2466.
  • Gallheber B-C, Fischer M, Klein O, et al. Formation of huge in-plane anisotropy of intrinsic stress by off-axis growth of diamond. Appl Phys Lett. 2016;109(14):141907.
  • Fischer M, Gsell S, Schreck M, et al. Growth sector dependence and mechanism of stress formation in epitaxial diamond growth. Appl Phys Lett. 2012;100(4):041906.
  • Stehl C, Fischer M, Gsell S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett. 2013;103(15):151905.
  • Maida O, Miyatake H, Teraji T, et al. Characterization of substrate off-angle effects for high-quality homoepitaxial CVD diamond films. Diam Relat Mater. 2008;17(4–5):435–439.
  • Bauer T, Schreck M, Stritzker B. Epitaxial lateral overgrowth (ELO) of homoepitaxial diamond through an iridium mesh. Diam Relat Mater. 2007;16(4–7):711–717.
  • Tang Y-H, Bi B, Golding B. Diamond heteroepitaxial lateral overgrowth. MRS Proc. 2015;1734:mrsf14-1734-r05-04.
  • Tang Y-H, Golding B. Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth. Appl Phys Lett. 2016;108(5):052101.
  • Yoshikawa T, Kodama H, Kono S, et al. Wafer bowing control of free-standing heteroepitaxial diamond (100) films grown on Ir (100) substrates via patterned nucleation growth. Thin Solid Films 2015;594:120–128.
  • Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam Relat Mater. 2019;94:92–100.
  • Mehmel L, Issaoui R, Brinza O, et al. Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates. Appl Phys Lett. 2021;118(6):061901.
  • Ohmagari S, Yamada H, Tsubouchi N, et al. Schottky barrier diodes fabricated on diamond mosaic wafers: dislocation reduction to mitigate the effect of coalescence boundaries. Appl Phys Lett. 2019;114(8):082104.
  • Ohmagari S, Yamada H, Tsubouchi N, et al. Large reduction of threading dislocations in diamond by hot-filament chemical vapor deposition accompanying W incorporations. Appl Phys Lett. 2018;113(3):032108.
  • Rouger N, Maréchal A. Design of diamond power devices: application to Schottky barrier diodes. Energies. 2019;12(12):2387.
  • Kawashima H, Noguchi H, Matsumoto T, et al. Electronic properties of diamond Schottky barrier diodes fabricated on silicon-based heteroepitaxially grown diamond substrates. Appl Phys Express. 2015;8(10):104103.
  • Murooka T, Hatano M, Yaita J, et al. Characterization of Schottky barrier diodes on heteroepitaxial diamond on 3C-SiC/Si substrates. IEEE Trans Electron Devices. 2020;67(1):212–216.
  • Kwak T, Lee J, Choi U, et al. Diamond Schottky barrier diodes fabricated on sapphire-based freestanding heteroepitaxial diamond substrate. Diam Relat Mater. 2021;114:108335.
  • Sittimart P, Ohmagari S, Yoshitake T. Enhanced in-plane uniformity and breakdown strength of diamond Schottky barrier diodes fabricated on heteroepitaxial substrates. Jpn J Appl Phys. 2021;60(SB):SBBD05.
  • Syamsul M, Oi N, Okubo S, et al. Heteroepitaxial ­diamond field-effect transistor for high voltage ­applications. IEEE Electron Device Lett. 2018;39(1):51–54.
  • Kasu M, Saha NC, Oishi T, et al. Fabrication of diamond modulation-doped FETs by NO2 delta doping in an Al2O3 gate layer. Appl Phys Express. 2021;14(5):051004.
  • Saha NC, Kim S-W, Oishi T, et al. 345-MW/cm2 2608-V NO2 p-type doped diamond MOSFETs with an Al2O3 passivation overlayer on heteroepitaxial diamond. IEEE Electron Device Lett. 2021;42(6):903–906.
  • Zhang X, Matsumoto T, Nakano Y, et al. Inversion channel MOSFET on heteroepitaxially grown free-standing diamond. Carbon 2021;175:615–619.
  • Choi U, Kwak T, Han S, et al. High breakdown voltage of boron-doped diamond metal semiconductor field effect transistor grown on freestanding heteroepitaxial diamond substrate. Diam Relat Mater. 2022;121:108782.
  • Saha NC, Kim S-W, Oishi T, et al. 875-MW/cm2 low-resistance NO2 p-type doped chemical mechanical planarized diamond MOSFETs. IEEE Electron Device Lett. 2022;43(5):777–780.
  • Saha NC, Kim S-W, Oishi T, et al. 3326-V modulation-doped diamond MOSFETs. IEEE Electron Device Lett. 2022;43(8):1303–1306.
  • Saha NC, Oishi T, Kim S, et al. 145-MW/cm2 heteroepitaxial diamond MOSFETs with NO2 p-type doping and an Al2O3 passivation layer. IEEE Electron Device Lett. 2020;41(7):1066–1069.
  • Aleksov A, Kubovic M, Kaeb N, et al. Diamond field effect transistors—concepts and challenges. Diam Relat Mater. 2003;12(3–7):391–398.
  • Wu Y, Herrera C, Hardy A, et al. Diamond metal-semiconductor field effect transistor for high temperature applications. In: 2019 Device Research Conference (DRC); IEEE, Ann Arbor, MI; 2019. p. 155–156.
  • Berdermann E, Pomorski M, de Boer W, et al. Diamond detectors for hadron physics research, diam. Relat Mater. 2010;19(5–6):358–367.
  • Ciobanu M, Pomorski M, Berdermann E, et al. Simulations and test results of large area continuous position sensitive diamond detectors. Diam Relat Mater. 2016;65:115–124.
1936
Favorite
Share

Related articles