Skip to main content

Morphology-dependent antibacterial properties of diamond coatings

Ruoying Zhang,Yuting Zheng,Jinlong Liu,Chengming Li,Chengke Chen,Xiaojun Hu,Jinlong Li,Ran Liu,Haitao Ye
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2157225

Abstract

Microorganisms promoted corrosion has caused significant loss to marine engineering and the antibacterial coatings have served as a solution that has gained attention. In this study, the chemical vapour deposition technique has been employed to grow three different types of diamond coatings, namely, ultrananocrystalline diamond (UNCD), nanocrystalline diamond (NCD), and microcrystalline diamond (MCD) coatings. The evolution of associated surface morphology and the surface functional groups of the grown coatings have demonstrated antibacterial activity in seawater environments. It is found that different ratio of sp3/sp2 carbon bonds on the diamond coatings influences their surface property (hydrophobic/hydrophilic), which changes the anti-adhesion behaviour of diamond coatings against bacteria. This plays a critical role in determining the antibacterial property of the developed coatings. The results show that the diamond coatings arising from the deposition process kill the bacteria via a combination of the mechanical effects and the functional groups on the surface of UNCD, NCD, and MCD coatings, respectively. These antibacterial coatings are effective to both Gram-negative bacteria (E. coli) and Gram-positive bacteria (B. subtilis) for 1–6 h of incubation time. When the contact duration is prolonged to 6 h or over, the MCD coatings begin to reduce the bacteria colonies drastically and enhance the bacteriostatic rate for both E. coli and B. subtilis.

Keywords

Diamond coatings; antibacterial; B. subtilis; E. coli

References

  • Oh HG, Lee JY, Son HG, et al. Antibacterial mechanisms of nanocrystalline diamond film and graphene sheet. Results Phys. 2019;12:2129–2135.
  • Morse SS. 2001. Factors in the emergence of infectious diseases. In: Price-Smith AT, editors. Plagues and politics. Global issues series. London: Palgrave Macmillan.
  • Zhu YB, Dong MP, Chang KK, et al. Prolonged anti-bacterial action by sluggish release of Ag from TiSiN/Ag multilayer coating. J. Alloys. Compd. 2019;783:164–172.
  • Wu W, Zhao W, Wu Y, Zhou C, et al. Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings. Appl. Surf. Sci. 2019;465:279–287.
  • Biswas P, Bandyopadhyaya R. Synergistic antibacterial activity of a combination of silver and copper nanoparticle impregnated activated carbon for water disinfection. Environ. Sci.: Nano. 2017;4(12):2405–2417.
  • Gutiérrez JM, Conceição K, Andrade VM, et al. High antibacterial properties of DLC film doped with nanodiamond. Surf. Coat. Tech. 2019;375:395–401.
  • Marciano FR, Oliveira DAL, Silva NSD, et al. Antibacterial activity of fluorinated diamond-like carbon coatings produced by PECVD. Surf. Coat. Tech. 2010;204(18–19):2986–2990.
  • Cumont A, Zhang R, Zheng Y, et al. Antibacterial properties of polycrystalline diamond films. Ceram. Int. 2021;47(23):32562–32569.
  • Cumont A, Pitt A, Lambert PA, et al. Properties, mechanism and applications of diamond as an antibacterial material. Funct. Diamond. 2021;1(1):1–28.
  • Ren DW, Zhao Q, Bendavid A. Anti-bacterial property of Si and F doped diamond-like carbon coatings. Surf. Coat. Tech. 2013;226:1–6.
  • Ye H, Su S. Impedance spectroscopy on Carbon-based materials for biological application, biological and biomedical coatings handbook: applications. CRC Press 2017.
  • Chen M, Pierstorff E, Lam R, et al. Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 2009;3(7):2016–2022.
  • Granek A, Monika M, Ozimina D. Diamond-like carbon films for use in medical implants AIP Conf. Proc. 2018;2017;020006.
  • Wang T, Huang L, Liu Y, et al. Robust biomimetic hierarchical diamond architecture with a self-cleaning, antibacterial, and antibiofouling surface. ACS Appl. Mater. Interfaces. 2020;12(21):24432–24441.
  • Stavis C, Clare T, Butler J, et al. Surface functionalization of thin-film diamond for highly stable and selective biological interfaces. Proc. Natl. Acad. Sci. U.S.A. 2010;108(3):983–988.
  • Zheng Y, Li C, Liu J, et al. Diamond with nitrogen: states, control, and applications. Funct. Diamond. 2021;1(1):63–82.
  • Ye H, Sun C, Hing P, et al. Nucleation and growth dynamics of diamond films by microwave plasma enhanced chemical vapour deposition. Surf. Coat. Technol. 2000;123(2–3):129–133.
  • Zheng Y, Cumont A, Bai M, et al. Smoothing of single crystal diamond by high-speed three-dimensional dynamic friction polishing: optimization and surface bonds evolution mechanism. Int. J. Refract. Met. Hard Mater. 2021;96:105472.
  • Xu H, Ye H, Coathup D, et al. An insight of p-type to n-type conductivity conversion in oxygen ion-implanted ultrananocrystalline diamond films by impedance spectroscopy. Appl. Phys. Lett. 2017;110(3):033102.
  • Lin Q, Chen S, Shen B, et al. CVD diamond coated drawing dies: a review. Mater. Manuf. Processes. 2021;36(4):381–408.
  • Schrand AM, Hens SAC, Henderova OA. Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 2009;34(1–2):18–74.
  • Zhang X, Lam R, Xu X, et al. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv. Mater. 2011;23(41):4770–4775.
  • Babchenko O, Kromka A, Hruska K, et al. Fabrication of nano-structured diamond coatings for SAOS-2 cell cultivation. Phys. Status Solidi A. 2009;206(9):2033–2037.
  • Michels H, Noyce J, Keevil C. Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett. Appl. Microbiol. 2009;49(2):191–195.
  • Medina O, Nocua J, Mendoza F, et al. Bactericide and bacterial anti-adhesive properties of the nanocrystalline diamond surface. Diamond Relat. Mater. 2012;22:77–81.
  • Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv. Healthcare Mater. 2018;7(13):1701503.
  • Williams KM, Gokulan K, Cerniglia CE, et al. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J. Nanobiotechnol. 2016;14(1):62.
  • Shaikh S, Nazam N, Rizvi SM, et al. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. IJMS. 2019;20(10):2468.
  • Qing Y, Cheng L, Li R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. IJN. 2018;13:3311–3327. volume
  • Díaz-Visurraga J, Gutiérrez C, Plessing CV, et al. Metal nanostructures as antibacterial agents. Sci. Microb. Pathog.: Commun. Curr. Res. Technol. Adv. 2011;1:210–218.
  • Kalbacova M, Kalbac M, Dunsch L, et al. The effect of SWCNT and nano-diamond films on human osteoblast cells. Phys. Status Solidi B. 2007;244(11):4356–4359.
  • Fong JS, Booth MA, Rifai A, et al. Diamond in the rough: toward improved materials for the bone–implant interface. Adv. Healthcare Mater. 2021;10(14):2100007.
  • Dunseath O, Smith E, Al-Jeda T, et al. Studies of black diamond as an antibacterial surface for Gram negative bacteria: the interplay between chemical and mechanical bactericidal activity. Sci. Rep. 2019;9(1)):8815.
  • Wehling J, Dringen R, Zare RN, et al. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano. 2014;8(6):6475–6483.
  • May PW, Clegg M, Silva TA, et al. Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces. J. Mater. Chem. B. 2016;4(34):5737–5746.
  • Marciano F, Bonetti L, Santos L, et al. Antibacterial activity of DLC and Ag–DLC coatings produced by PECVD technique. Diamond Relat. Mater. 2009;18(5–8):1010–1014.
  • Merker D, Popova B, Bergfeldt T, et al. Antimicrobial propensity of ultrananocrystalline diamond coatings with embedded silver nanodroplets. Diamond Relat. Mater. 2019;93:168–178.
  • Jelinek M, Voss A, Kocourek T, et al. Comparison of the surface properties of DLC and ultrananocrystalline diamond coatings with respect to their bio-applications. Phys. Status Solidi A. 2013;210(10):2106–2110.
  • van der Mei H, Bos R, Busscher H. A reference guide to microbial cell surface hydrophobicity based on contact angles. Colloids Surf., B. 1998;11(4):213–221.
  • Wang JL, Chen CK, Li X, et al. Influences of grain size and microstructure on optical properties of microcrystalline diamond films. Chin. Phys. B. 2020;29(1):018103.
  • Jiang M, Chen C, Wang P, et al. Diamond formation mechanism in chemical vapor deposition. Proc. Natl. Acad. Sci. U.S.A. 2022;119(16):e2201451119.
  • Liang X, Wang L, Zhu H, et al. Effect of pressure on nanocrystalline diamond coatings deposition by hot filament CVD technique from CH4/H2 gas mixture. Surf. Coat. Tech. 2007;202(2):261–267.
  • Tan P, Hu C, Dong J, et al. Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker. Phys. Rev. B. 2001;64(21):214301.
  • Su S, Li J, Kundrat V, et al. Hydrogen-terminated detonation nanodiamond: an impedance spectroscopy study. Diamond Relat. Mater. 2012;24:49–53.
  • Silviy AV, Stateva R, Reithmaier JP, et al. Patterning of the surface termination of ultrananocrystalline diamond coatings for guided cell attachment and growth. Surf. Coat. Tech. 2017;321:229–235.
  • Ferreira NG, Abramof E, Corat EJ, et al. Residual stresses and crystalline quality of heavily boron-doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction. Carbon. 2003;41(6):1301–1308.
  • Ray SC, Bose B, Chiou JW, et al. Deposition and characterization of diamond-like carbon thin films by electro-deposition technique using organic liquid. J. Mater. Res. 2004;19(4):1126–1132.
  • Varga M, Izak T, Vretenar V, et al. Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon. 2017;111:54–61.
  • Duan X, Tian W, Zhang H, et al. SP2/sp3 framework from diamond nanocrystals: a key bridge of carbonaceous structure to carbocatalysis. ACS Catal. 2019;9(8):7494–7519.
  • Wenzel RN. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936;28(8):988–994.
  • Quéré D. Wetting and roughness. Annu. Rev. Mater. Res. 2008;38(1):71–99.
  • An Y, Friedman R. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 1998;43(3):338–348.
  • Ferrari M, Benedetti A. Superhydrophobic surfaces for applications in seawater. Adv. Colloid Interface Sci. 2015;222:291–304.
  • Chapman R, Ostuni E, Liang M, et al. Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir. 2001;17(4):1225–1233.
  • Truong V, Lapovok R, Estrin Y, et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials. 2010;31(13):3674–3683.
  • Ivanova E, Truong V, Wang J, et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir. 2010;26(3):1973–1982.
  • Cui X, Liu X, Tatton AS, et al. Nanodiamond promotes surfactant-mediated triglyceride removal from a hydrophobic surface at or below room temperature. ACS Appl. Mater. Interfaces. 2012;4(6):3225–3232.
  • Cumont A, Zhang R, Corscadden L, et al. Characterisation and antibacterial investigation of a novel coating consisting of mushroom microstructures and HFCVD graphite. Mater. Des. 2020;189:108498.
  • Xia Y, Gao X, Li R. Influence of surface wettability on bubble formation and motion. Langmuir. 2021;37(49):14483–14490.
  • Xu J, Ji M, Li L, et al. Improving wettability, antibacterial and tribological behaviors of zirconia ceramics through surface texturing. Ceram. Int. 2022;48(3):3702–3710.
  • Gui L, Lin J, Liu J, et al. Difference and association of antibacterial and bacterial anti-adhesive performances between smart Ag/AgCl/TiO2 composite surfaces with switchable wettability. Chem. Eng. J. 2022;431:134103.
  • Akhavan O, Azimirad R, Safa S. Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater. Chem. Phys. 2011;130(1–2):598–602.
  • Qiu J, Wang D, Geng H, et al. How oxygen‐containing groups on graphene influence the antibacterial behaviors. Adv. Mater. Interface 2017;4(15):1700228.
  • Yang KH, Riley P, Rodenhausen KB, et al. Antifungal behavior of silicon‐incorporated diamond‐like carbon by tuning surface hydrophobicity with plasma treatment. Int. J. Appl. Ceram. Tech. 2022;19(5):2545–2555.
  • Beranová J, Seydlová G, Kozak H, et al. Sensitivity of bacteria to diamond nanoparticles of various size differs in Gram-positive and Gram-negative cells. FEMS Microbiol. Lett. 2014;351(2):179–186.
  • Chang S, Chen X, Jiang S, et al. Using micro-patterned surfaces to inhibit settlement and biofilm formation by Bacillus subtilis. Can. J. Microbiol. 2017;63(7):608–620.
611
Favorite
Share

Related articles