Skip to main content

Tuning diamond electronic properties for functional device applications

Anliang Lu ,
Limin Yang ,
Chaoqun Dang ,
Heyi Wang ,
Yang Zhang ,
Xiaocui Li ,
Hongti Zhang ,
Yang Lu
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2151322

Abstract

Because of its ultrahigh hardness, synthetic diamond has been widely used in advanced manufacturing and mechanical engineering. As an ultra-wide bandgap semiconductor, on the other hand, diamond recently shows a great potential in electronics industry due to its outstanding physical properties. However, like silicon-based electronics, the electrical properties of diamond should be well modulated before it can be practically used in electronic devices. In this work, we briefly review the recent progresses in producing high-quality, electronic grade synthetic diamonds, as well as several typical strategies, from the conventional element doping to the emerging “elastic strain engineering,” (ESE) for tuning the electrical and functional properties of microfabricated diamonds. We also briefly show some device application demonstrations of diamond and outline some remaining challenges that are impeding diamond’s further practical applications as functional devices and offer some perspective for future functional diamond development.

Keywords

Diamond; electronic properties; bandgap modulation; elastic strain engineering; wide bandgap semiconductor; functional device

References

  • Harano K, Satoh T, Sumiya H. Cutting performance of nano-polycrystalline diamond. Diamond Relat Mater. 2012;24:78–82.
  • Wentorf R, DeVries RC, Bundy F. Sintered superhard materials. Science. 1980;208(4446):873–880.
  • Goncharenko IN. Neutron diffraction experiments in diamond and sapphire anvil cells. High Pressure Res. 2004;24(1):193–204.
  • Moseley SG, Bohn KP, Goedickemeier M. Core drilling in reinforced concrete using polycrystalline diamond (PCD) cutters: wear and fracture mechanisms. Int J Refract Met Hard Mater. 2009;27(2):394–402.
  • Sun FH, Zhang ZM, Chen M, et al. Improvement of adhesive strength and surface roughness of diamond films on Co-cemented tungsten carbide tools. Diamond Relat Mater. 2003;12(3–7):711–718.
  • Matsumoto S, Sato Y, Kamo M, et al. Vapor deposition of diamond particles from methane. Jpn J Appl Phys. 1982;21(4):L183–L185.
  • Ueda K, Kasu M, Yamauchi Y, et al. Diamond FET using high-quality polycrystalline diamond with f T of 45 GHz and f max of 120 GHz. IEEE Electron Device Lett. 2006;27(7):570–572.
  • Taniuchi H, Umezawa H, Arima T, et al. High-frequency performance of diamond field-effect transistor. IEEE Electron Device Lett. 2001;22(8):390–392.
  • Kurihara K, Sasaki K, Kawarada M, et al. High rate synthesis of diamond by dc plasma jet chemical vapor deposition. Appl Phys Lett. 1988;52(6):437–438.
  • Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science. 2002;297(5587):1670–1672.
  • Zimmermann T, Kubovic M, Denisenko A, et al. Ultra-nano-crystalline/single crystal diamond heterost­ructure diode. Diamond Relat Mater. 2005;14(3–7):416–420.
  • Balducci A, De Sio A, Marinelli M, et al. Extreme UV single crystal diamond photodetectors by chemical vapor deposition. Diamond Relat Mater. 2005;14(11–12):1980–1983.
  • Dhomkar S, Henshaw J, Jayakumar H, et al. Long-term data storage in diamond. Sci Adv. 2016;2(10):e1600911.
  • Ovartchaiyapong P, Lee KW, Myers BA, et al. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat Commun. 2014;5:4429.
  • Sharda T, Sikder AK, Misra DS, et al. Studies of defects and impurities in diamond thin films. Diamond Relat Mater. 1998;7(2–5):250–254.
  • Palyanov YN, Borzdov YM, Khokhryakov AF, et al. Effect of nitrogen impurity on diamond crystal growth processes. Crystal Growth Design. 2010;10(7):3169–3175.
  • Eaton-Magana S, Shigley JE. Observations on CVD-Grown synthetic diamonds: a review. Gems Gemol. 2016;52:222–245.
  • Asmussen J, Grotjohn TA, Schuelke T, et al. Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis. Appl Phys Lett. 2008;93(3):031502.
  • Schreck M, Asmussen J, Shikata S, et al. Large-area high-quality single crystal diamond. MRS Bull. 2014;39(6):504–510.
  • Bundy FP, Hall HT, Strong HM, et al. Man-made diamonds. Nature. 1955;176(4471):51–55.
  • Wentorf RH. Diamond growth rates. J Phys Chem. 1971;75(12):1833–1837.
  • Liang ZZ, Jia X, Ma HA, et al. Synthesis of HPHT diamond containing high concentrations of nitrogen impurities using NaN3 as dopant in metal-carbon system. Diamond Relat Mater. 2005;14(11–12):1932–1935.
  • Kanda H. Colored high pressure high temperature (HPHT) synthetic diamonds. Radiat Eff Defects Solids. 2001;156(1-4):163–172.
  • Palyanov YN, Kupriyanov IN, Khokhryakov AF, et al. High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngComm. 2017;19(31):4459–4475.
  • Eversole WG, April 17. Synthesis of diamond. US Patent, 3,030188. 1962.
  • Wang T, Xin HW, Zhang ZM, et al. The fabrication of nanocrystalline diamond films using hot filament CVD. Diamond Relat Mater. 2004;13(1):6–13.
  • Smith JA, Rosser KN, Yagi H, et al. Diamond deposition in a DC-arc jet CVD system: investigations of the effects of nitrogen addition. Diamond Relat Mater. 2001;10(3–7):370–375.
  • Chayahara A, Mokuno Y, Horino Y, et al. The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD. Diamond Relat Mater. 2004;13(11–12):1954–1958.
  • Werner M, Locher R. Growth and application of undoped and doped diamond films. Rep Prog Phys. 1998;61(12):1665–1710.
  • Liang Q, Chin CY, Lai J, et al. Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures. Appl Phys Lett. 2009;94(2):024103.
  • Silva F, Achard J, Brinza O, et al. High quality, large surface area, homoepitaxial MPACVD diamond growth. Diamond Relat Mater. 2009;18(5–8):683–697.
  • Goodwin DG. Scaling laws for diamond chemical‐vapor deposition. I. Diamond surface chemistry. J Appl Phys. 1993;74(11):6888–6894.
  • Silva F, Hassouni K, Bonnin X, et al. Microwave engineering of plasma-assisted CVD reactors for diamond deposition. J Phys: condens Matter. 2009;21(36):364202.
  • Gicquel A, Derkaoui N, Rond C, et al. Quantitative analysis of diamond deposition reactor efficiency. Chem Phys. 2012;398:239–247.
  • Yan CS, Vohra YK, Mao HK, et al. Very high growth rate chemical vapor deposition of single-crystal diamond. Proc Natl Acad Sci USA. 2002;99(20):12523–12525.
  • Lubeigt W, Bonner GM, Hastie JE, et al. Continuous-wave diamond raman laser. Opt Lett. 2010;35(17):2994–2996.
  • Umezawa H, Ikeda K, Tatsumi N, et al. Device scaling of pseudo-vertical diamond power schottky barrier diodes. Diamond Relat Mater. 2009;18(9):1196–1199.
  • Takeuchi D, Yamanaka S, Watanabe H, et al. High quality homoepitaxial diamond thin film synthesis with high growth rate by a two-step growth method. Diamond Relat Mater. 1999;8(6):1046–1049.
  • Mokuno Y, Kato Y, Tsubouchi N, et al. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process. Appl Phys Lett. 2014;104(25):252109.
  • Tallaire A, Barjon J, Brinza O, et al. Dislocations and impurities introduced from etch-pits at the epitaxial growth resumption of diamond. Diamond Relat Mater. 2011;20(7):875–881.
  • Mokuno Y, Chayahara A, Yamada H, et al. Improving purity and size of single-crystal diamond plates produced by high-rate CVD growth and lift-off process using ion implantation. Diamond Relat Mater. 2009;18(10):1258–1261.
  • Yamada H, Chayahara A, Mokuno Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond. Appl Phys Lett. 2014;104(10):102110.
  • Janssen G, Giling L. “Mosaic” growth of diamond. Diamond Relat Mater. 1995;4(7):1025–1031.
  • Kobashi K, Nishibayashi Y, Yokota Y, et al. R&D of diamond films in the frontier carbon technology project and related topics. Diamond Relat Mater. 2003;12(3–7):233–240.
  • Yamada H, Chayahara A, Umezawa H, et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size. Diamond Relat Mater. 2012;24:29–33.
  • Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017;7(1):44462.
  • Aleksov A, Kubovic M, Kasu M, et al. Diamond-based electronics for RF applications. Diamond Relat Mater. 2004;13(2):233–240.
  • Okushi H, Watanabe H, Ri S, et al. Device-grade homoepitaxial diamond film growth. J Cryst Growth. 2002;237–239:1269–1276.
  • Bogdan G, Nesládek M, D’Haen J, et al. Growth and characterization of near‐atomically flat, thick homoepitaxial CVD diamond films. Phys Stat Solidi (a). 2005;202(11):2066–2072.
  • Teraji T, Hamada M, Wada H, et al. High-quality homoepitaxial diamond (100) films grown under high-rate growth condition. Diamond Relat Mater. 2005;14(11–12):1747–1752.
  • Tsubouchi N, Ogura M, Horino Y, et al. Low-resistance p + layer formation into diamond using heavily B ion implantation. Appl Phys Lett. 2006;89(1):012101.
  • Werner M, Dorsch O, Baerwind HU, et al. Charge transport in heavily B‐doped polycrystalline diamond films. Appl Phys Lett. 1994;64(5):595–597.
  • Scott EA, Hattar K, Braun JL, et al. Orders of magnitude reduction in the thermal conductivity of polycrystalline diamond through carbon, nitrogen, and oxygen ion implantation. Carbon. 2020;157:97–105.
  • Smith JM, Meynell SA, Bleszynski Jayich AC, et al. Colour Centre generation in diamond for quantum technologies. Nanophotonics. 2019;8(11):1889–1906.
  • Haque A, Sumaiya S. An overview on the formation and processing of Nitrogen-Vacancy photonic centers in diamond by ion implantation. JMMP. 2017;1(1):6.
  • Agulló-Rueda F, Gordillo N, Ynsa MD, et al. Lattice damage in 9-MeV-carbon irradiated diamond and its recovery after annealing. Carbon. 2017;123:334–343.
  • Kobashi K, Nishimura K, Kawate Y, et al. Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: morphology and growth of diamond films. Phys Rev B. 1988;38(6):4067–4084.
  • Sato H, Tomokage H, Kiyota H, et al. Transient current measurements after applying the electron-beam pulse on boron-doped homoepitaxial diamond films. Diamond Relat Mater. 1998;7(8):1167–1171.
  • Yamanaka S, Takeuchi D, Watanabe H, et al. Low‐compensated boron‐doped homoepitaxial diamond films using trimethylboron. Phys Stat Solidi (a). 1999;174(1):59–64.
  • Issaoui R, Achard J, Silva F, et al. Growth of thick heavily boron-doped diamond single crystals: effect of ­microwave power density. Appl Phys Lett. 2010;97(18):182101.
  • Yap CM, Ansari K, Xiao S, et al. Properties of near-colourless lightly boron doped CVD diamond. Diamond Relat Mater. 2018;88:118–122.
  • Ashfold MNR, Goss JP, Green BL, et al. Nitrogen in diamond. Chem Rev. 2020;120(12):5745–5794.
  • Grotjohn TA, Tran DT, Yaran MK, et al. Heavy phosphorus doping by epitaxial growth on the (111) diamond surface. Diamond Relat Mater. 2014;44:129–133.
  • Koizumi S, Kamo M, Sato Y, et al. Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. Appl Phys Lett. 1997;71(8):1065–1067.
  • Kato H, Yamasaki S, Okushi H. n-type doping of (001)-oriented single-crystalline diamond by phosphorus. Appl Phys Lett. 2005;86(22):222111.
  • Kato H, Ogura M, Makino T, et al. N-type control of single-crystal diamond films by ultra-lightly phosphorus doping. Appl Phys Lett. 2016;109(14):142102.
  • Kato H, Makino T, Yamasaki S, et al. n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J Phys D Appl Phys. 2007;40(20):6189–6200.
  • Koizumi S, Watanabe K, Hasegawa M, et al. Ultraviolet emission from a diamond pn junction. Science. 2001;292(5523):1899–1901.
  • Li Y, Jia X, Ma HA, et al. Electrical properties of diamond single crystals co-doped with hydrogen and boron. CrystEngComm. 2014;16(32):7547.
  • Issaoui R, Tallaire A, Mrad A, et al. Defect and threading dislocations in single crystal diamond: a focus on boron and nitrogen codoping. Phys Status Solidi A. 2019;216(21):1900581.
  • Hu XJ, Li RB, Shen HS, et al. Electrical and structural properties of boron and phosphorus co-doped diamond films. Carbon. 2004;42(8–9):1501–1506.
  • Li R, Hu X, Shen H, et al. Co-doping of sulfur and boron in CVD-diamond. Mater Lett. 2004;58(12–13):1835–1838.
  • Girard HA, Arnault JC, Perruchas S, et al. Hydrogenation of nanodiamonds using MPCVD: a new route toward organic functionalization. Diamond Relat Mater. 2010;19(7–9):1117–1123.
  • Krueger A, Lang D. Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater. 2012;22(5):890–906.
  • Ray MA, Tyler T, Hook B, et al. Cool plasma functionalization of nano-crystalline diamond films. Diamond Relat Mater. 2007;16(12):2087–2089.
  • Sotowa KI, Amamoto T, Sobana A, et al. Effect of treatment temperature on the amination of chlorinated diamond. Diamond Relat Mater. 2004;13(1):145–150.
  • Chen J, Deng SZ, Chen J, et al. Graphitization of nanodiamond powder annealed in argon ambient. Appl Phys Lett. 1999;74(24):3651–3653.
  • Landstrass MI, Ravi KV. Resistivity of chemical vapor deposited diamond films. Appl Phys Lett. 1989;55(10):975–977.
  • Ferro S, Battisti AD. The 5-V window of polarizability of fluorinated diamond electrodes in aqueous solutions. Anal Chem. 2003;75(24):7040–7042.
  • Sine G, Ouattara L, Panizza M, et al. Electrochemical behavior of fluorinated boron-doped diamond. Electrochem Solid-State Lett. 2003;6:9–11.
  • Mertens M, Mohr M, Brühne K, et al. Patterned hydrophobic and hydrophilic surfaces of ultra-smooth nanocrystalline diamond layers. Appl Surf Sci. 2016;390:526–530.
  • Osswald S, Yushin G, Mochalin V, et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc. 2006;128(35):11635–11642.
  • Krueger A. The structure and reactivity of nanoscale diamond. J Mater Chem. 2008;18(13):1485–1492.
  • Martín R, Heydorn PC, Alvaro M, et al. General strategy for High-Density covalent functionalization of diamond nanoparticles using fenton chemistry. Chem Mater. 2009;21(19):4505–4514.
  • Li Y, Zhang JF, Liu GP, et al. Mobility of two-dimensional hole gas in H-terminated diamond. Phys Status Solidi RRL. 2018;12(3):1700401.
  • Ahmed ASHEKI, Mandal S, Gines L, et al. Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon. 2016;110:438–442.
  • Cui J, Ristein J, Ley L. Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys Rev Lett. 1998;81(2):429–432.
  • Maier F, Riedel M, Mantel B, et al. Origin of surface conductivity in diamond. Phys Rev Lett. 2000;85(16):3472–3475.
  • Bandis C, Pate BB. Electron emission due to exciton breakup from negative electron affinity diamond. Phys Rev Lett. 1995;74(5):777–780.
  • Petrini D, Larsson K. A theoretical study of the energetic stability and geometry of hydrogen-and oxygen-­terminated diamond (100) surfaces. J Phys Chem C. 2007;111(2):795–801.
  • Sasama Y, Kageura T, Komatsu K, et al. Charge-carrier mobility in hydrogen-terminated diamond field-effect transistors. J Appl Phys. 2020;127(18):185707.
  • Sasama Y, Kageura T, Imura M, et al. High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride heterostructures. Nat Electron. 2022;5(1):37–44.
  • Tang H, Yuan X, Cheng Y, et al. Synthesis of paracrystalline diamond. Nature. 2021;599(7886):605–610.
  • Zhang S, Li Z, Luo K, et al. Discovery of carbon-based strongest and hardest amorphous material. Natl Sci Rev. 2022;9(1):nwab140.
  • Zhang S, Wu Y, Luo K, et al. Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene. Cell Rep Phys Sci. 2021;2(9):100575.
  • Shang Y, Liu Z, Dong J, et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature. 2021;599(7886):599–604.
  • Li Q, Ma Y, Oganov AR, et al. Superhard monoclinic polymorph of carbon. Phys Rev Lett. 2009;102(17):175506.
  • Mao WL, Mao H-K, Eng PJ, et al. Bonding changes in compressed superhard graphite. Science. 2003;302(5644):425–427.
  • Yang X, Yao M, Wu X, et al. Novel superhard sp^{3} carbon allotrope from Cold-Compressed C_{70} peapods. Phys Rev Lett. 2017;118(24):245701.
  • Liu F, Ming P, Li J. Ab initiocalculation of ideal strength and phonon instability of graphene under tension. Phys Rev B. 2007;76(6):064120.
  • Sun Y, Thompson SE, Nishida T. Physics of strain ­effects in semiconductors and metal-oxide-semiconductor field-effect transistors. J Appl Phys. 2007;101(10):104503.
  • Süess MJ, Geiger R, Minamisawa RA, et al. Analysis of enhanced light emission from highly strained germanium microbridges. Nat Photon. 2013;7(6):466–472.
  • Feng J, Qian X, Huang CW, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photon. 2012;6(12):866–872.
  • Sundaram RS, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS2. Nano Lett. 2013;13(4):1416–1421.
  • Thulin L, Guerra J. Calculations of strain-modified anataseTiO2band structures. Phys Rev B. 2008;77(19):195112.
  • Manasevit HM, Gergis IS, Jones AB. Electron mobility enhancement in epitaxial multilayer Si‐Si1 − xGexalloy films on (100) Si. Appl Phys Lett. 1982;41(5):464–466.
  • Thompson SE, Armstrong M, Auth C, et al. A logic nanotechnology featuring strained-silicon. IEEE Electron Device Lett. 2004;25(4):191–193.
  • Kukushkin SA, Osipov AV. A new method for the synthesis of epitaxial layers of silicon carbide on silicon owing to formation of dilatation dipoles. J Appl Phys. 2013;113(2):024909.
  • Banerjee A, Bernoulli D, Zhang H, et al. Ultralarge elastic deformation of nanoscale diamond. Science. 2018;360(6386):300–302.
  • Dang C, Chou JP, Dai B, et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science. 2021;371(6524):76–78.
  • Liu C, Song X, Li Q, et al. Smooth flow in diamond: ­atomistic ductility and electronic conductivity. Phys Rev Lett. 2019;123(19):195504.
  • Shi Z, Dao M, Tsymbalov E, et al. Metallization of diamond. Proc Natl Acad Sci USA. 2020;117(40):24634–24639.
  • Cheng Z, Mu F, Yates L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl Mater Interfaces. 2020;12(7):8376–8384.
  • Jiang X, Klages C-P. Heteroepitaxial diamond growth on (100) silicon. Diamond Relat Mater. 1993;2(5–7):1112–1113.
  • Kim SW, Kawamata Y, Takaya R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on (11 2 ¯0) sapphire substrate. Appl Phys Lett. 2020;117(20):202102.
  • Wang L, Pirouz P, Argoitia A, et al. Heteroepitaxially grown diamond on ac‐BN {111} surface. Appl Phys Lett. 1993;63(10):1336–1338.
  • Tachibana T, Yokota Y, Miyata K, et al. Diamond films heteroepitaxially grown on platinum (111). Phys Rev B. 1997;56(24):15967–15981.
  • Zhu W, Yang PC, Glass JT. Oriented diamond films grown on nickel substrates. Appl Phys Lett. 1993;63(12):1640–1642.
  • Kawarada H, Wild C, Herres N, et al. Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide. J Appl Phys. 1997;81(8):3490–3493.
  • Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diamond Relat Mater. 2019;94:92–100.
  • Field JE. The properties of natural and synthetic diamond. Cambridge (MA): Academic Press; 1992.
  • Knoop F, Peters CG, Emerson WB. A sensitive pyramidal-diamond tool for indentation measurements. J Res Natl Bur Stan. 1939;23(1):39.
  • Mao HK, Bell PM, Dunn KJ, et al. Absolute pressure measurements and analysis of diamonds subjected to maximum static pressures of 1.3-1.7 mbar. Rev Sci Instrum. 1979;50(8):1002–1009.
  • Wheeler JM, Raghavan R, Wehrs J, et al. Approaching the limits of strength: measuring the uniaxial compressive strength of diamond at small scales. Nano Lett. 2016;16(1):812–816.
  • Nie A, Bu Y, Huang J, et al. Direct observation of Room-Temperature dislocation plasticity in diamond. Matter. 2020;2(5):1222–1232.
  • Bu Y, Wang P, Nie A, et al. Room-temperature plasticity in diamond. Sci China Technol Sci. 2021;64(1):32–36.
  • Regan B, Aghajamali A, Froech J, et al. Plastic deformation of Single-Crystal diamond nanopillars. Adv Mater. 2020;32(9):e1906458.
  • Field JE. The mechanical and strength properties of diamond. Rep Prog Phys. 2012;75(12):126505.
  • Nie A, Bu Y, Li P, et al. Approaching diamond’s theoretical elasticity and strength limits. Nat Commun. 2019;10(1):5533.
  • Roundy D, Cohen ML. Ideal strength of diamond, Si, and Ge. Phys Rev B. 2001;64(21):212103.
  • Shi Z, Tsymbalov E, Dao M, et al. Deep elastic strain engineering of bandgap through machine learning. Proc Natl Acad Sci USA. 2019;116(10):4117–4122.
  • Tsymbalov E, Shi Z, Dao M, et al. Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass. NPJ Comput Mater. 2021;7(1):76.
  • Surh MP, Louie SG, Cohen ML. Band gaps of diamond under anisotropic stress. Phys Rev B. 1992;45(15):8239–8247.
  • Ekimov EA, Sidorov VA, Bauer ED, et al. Superconductivity in diamond. Nature. 2004;428(6982):542–545.
  • Liu C, Song X, Li Q, et al. Superconductivity in compression-shear deformed diamond. Phys Rev Lett. 2020;124(14):147001.
  • Webb GW, Marsiglio F, Hirsch JE. Superconductivity in the elements, alloys and simple compounds. Physica C Superconduct Appl. 2015;514:17–27.
  • Ishii S, Saiki S, Onoda S, et al. Ensemble negatively-charged nitrogen-vacancy centers in type-Ib diamond created by high fluence electron beam irradiation. QuBS. 2021;6(1):2.
  • Ladd TD, Jelezko F, Laflamme R, et al. Quantum computers. Nature. 2010;464(7285):45–53.
  • Nunn J. Diamond envy. Nature Phys. 2013;9(3):136–137.
  • Wang P, Chen S, Guo M, et al. Nanoscale magnetic imaging of ferritins in a single cell. Sci Adv. 2019;5(4):eaau8038.
  • Shi F, Zhang Q, Wang P, et al. Single-protein spin resonance spectroscopy under ambient conditions. Science. 2015;347(6226):1135–1138.
  • Yang Z, Shi F, Wang P, et al. Detection of magnetic dipolar coupling of water molecules at the nanoscale using quantum magnetometry. Phys Rev B. 2018;97(20):205438.
  • Rondin L, Tetienne JP, Hingant T, et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep Prog Phys. 2014;77(5):056503.
  • Dolde F, Fedder H, Doherty MW, et al. Electric-field sensing using single diamond spins. Nat Phys. 2011;7(6):459–463.
  • Bennett SD, Yao NY, Otterbach J, et al. Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing. Phys Rev Lett. 2013;110(15):156402.
  • Barfuss A, Teissier J, Neu E, et al. Strong mechanical driving of a single electron spin. Nat Phys. 2015;11(10):820–824.
  • Geis MW, Rathman DD, Ehrlich DJ, et al. High-temperature point-contact transistors and schottky diodes formed on synthetic boron-doped diamond. IEEE Electron Device Lett. 1987;8(8):341–343.
  • Umezawa H, Tatsumi N, Shikata SI, et al. Increase in reverse operation limit by barrier height control of diamond schottky barrier diode. IEEE Electron Device Lett. 2009;30(9):960–962.
  • Lagomarsino S, Bellini M, Corsi C, et al. Radiation hardness of three-dimensional polycrystalline diamond detectors. Appl Phys Lett. 2015;106(19):193509.
1227
Favorite
Share

Related articles