Skip to main content

Designing of room temperature diluted ferromagnetic Fe doped diamond semiconductor

Tianwei Li ,
Jianxin Hao ,
Wei Cao ,
Tingting Jia ,
Zhenxiang Cheng ,
Qiuming Fu ,
Hongyang Zhao ,
Zhibin Ma
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2098065

Abstract

Semiconductor devices generally take advantage of the charge of electrons, whereas magnetic materials are used for recording information involving electron spin. To make use of both charge and spin of electrons in semiconductors, a high concentration of magnetic elements can be introduced in nonmagnetic III-V semiconductors to make magnetic semiconductor. In this work, Fe-Diamond was obtained with low solubility by modified microwave plasma chemical vapor deposition technique. Magnetic measurements revealed that the magnetic transition temperature from paramagnetic to ferromagnetic-like is above room temperature. The bandgap of Fe-Diamond is calculated to be 1.65 eV, which indicates that Fe-Diamond is a room temperature diluted ferromagnetic semiconductor.

Keywords

Fe doped diamond; Ferromagnetic; Semiconductor

References

  • Willander M, Friesel M, Wahab Q-U, et al. Silicon carbide and diamond for high temperature device applications. J Mater Sci: Mater Electron. 2006;17(1):1–25. https://doi.org/10.1007/s10854-005-5137-4
  • Ovanesyan RA, Filatova EA, Elliott SD, et al. Atomic layer deposition of silicon-based dielectrics for semiconductor manufacturing: Current status and future outlook. J Vacuum Sci Technol A. 2019;37(6):060904. https://doi.org/10.1116/1.5113631
  • Ji L, McDaniel MD, Wang S, et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nature Nanotech. 2015;10(1):84–90. https://doi.org/10.1038/nnano.2014.277
  • Shi L, Nihtianov S. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sensors J. 2012;12(7):2453–2459. https://doi.org/10.1109/JSEN.2012.2192103
  • Vasdekis AE, Moore SA, Ruseckas A, et al. Silicon based organic semiconductor laser. Appl Phys Lett. 2007;91(5):051124. https://doi.org/10.1063/1.2764553
  • Huang X, Mei C, Hu J, et al. Potential superiority of p-Type Silicon-Based metal–oxide–semiconductor structures over n-Type for lateral photovoltaic effects. IEEE Electron Device Lett. 2016;37(8):1018–1021. https://doi.org/10.1109/LED.2016.2577700
  • Awschalom DD, Flatté ME. Challenges for semiconductor spintronics. Nature Phys. 2007;3(3):153–159. https://doi.org/10.1038/nphys551
  • Fert A. The present and the future of spintronics. Thin Solid Films. 2008;517(1):2–5. https://doi.org/10.1016/j.tsf.2008.08.172
  • Bogani L, Wernsdorfer W. Molecular spintronics ­using single-molecule magnets. Nano Technol. 2009; 194–201. https://doi.org/10.1142/9789814287005_0020
  • Daya N, Sideras-Haddad E, Makgato TN, et al. Investigation of the magnetic properties of proton irradiated type Ib HPHT diamond. Diamond Relat Mater. 2016;64:197–201. https://doi.org/10.1016/j.diamond.2016.02.019
  • Michelfeit M, Schmidt G, Geurts J, et al. Organic field‐effect transistors for spin‐polarized transport. Phys. Stat. Sol. (A). 2008;205(3):656–663. https://doi.org/10.1002/pssa.200723436
  • Gao H-X, Li J-B, Xia J-B. Origins of ferromagnetism in transition metal doped diamond. Physica B. 2012;407(12):2347–2350. https://doi.org/10.1016/j.physb.2012.03.035
  • Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 2000;287(5455):1019–1022. https://doi.org/10.1126/science.287.5455.1019
  • Dietl T, Ohno H, Matsukura F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys Rev B. 2001;63(19):195205. https://doi.org/10.1103/PhysRevB.63.195205
  • Vavilov VS. The properties of natural and synthetic diamond. Phys.-Usp. 1993;36(11):1083–1084. https://doi.org/10.1070/pu1993v036n11abeh002207
  • Donarelli M, Kazakova O, Ortolani L, et al. Room temperature ferromagnetism in low dose ion implanted counter-doped Ge: Mn, As. Physica B. 2017;523:1–5. https://doi.org/10.1016/j.physb.2017.08.007
  • Oishi T, Kawano N, Masuya S, et al. Diamond schottky barrier diodes with NO2 exposed surface and RF-DC conversion toward high power rectenna. IEEE Electron Device Lett. 2017;38(1):87–90. https://doi.org/10.1109/LED.2016.2626380
  • Lin C-N, Lu Y-J, Yang X, et al. Diamond-based all-carbon photodetectors for solar-blind imaging. Adv Opt Mater. 2018;6(15):1800068. https://doi.org/10.1002/adom.201800068
  • Teraji T, Ito T. Homoepitaxial diamond growth by high-power microwave-plasma chemical vapor deposition. J Cryst Growth. 2004;271(3–4):409–419. https://doi.org/10.1016/jjcrysgro.2004.08.005
  • Koeck FAM, Nemanich RJ. Low temperature onset for thermionic emitters based on nitrogen incorporated UNCD films. Diamond Relat Mater. 2009;18(2–3):232–234. https://doi.org/10.1016/j.diamond.2008.11.023
  • An K, Chen L, Yan X, et al. Fracture strength and toughness of chemical-vapor-deposited polycrystalline diamond films. Ceram Int. 2018;44(15):17845–17851. https://doi.org/10.1016/j.ceramint.2018.06.253
591
Favorite
Share

Related articles