Skip to main content

Luminescent diamond composites

Vadim Sedov ,
Sergei Kuznetsov ,
Artem Martyanov ,
Victor Ralchenko
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2071112

Abstract

Diamond is valuable material with extraordinary high thermal conductivity and transparency in a wide spectral range from UV to IR and longer wavelengths. Defects and impurities in the diamond lattice can absorb and emit light at wavelengths specific for each of such “color centers.” Particularly, the vacancy-related defects in diamond, such as nitrogen-vacancy (NV) or silicon-vacancy (SiV) centers, are actively investigated due to their potential for biomedicine, quantum optics, local thermometry and magnetometry. Although a great variety of different color centers in diamond are discovered, only a limited number of those point defects can be reliably reproduced in synthetic diamond, obtained either by chemical vapor deposition (CVD) or high-pressure high-temperature (HPHT). An alternative approach to producing luminescent diamond-based materials is to integrate stable non-diamond sources of luminescence in the form of nano- or microparticles of foreign materials into the pristine diamond. The produced diamond composites possess excellent properties of diamond combined with optical emission characteristics, which cannot be provided with intrinsic defects in diamond. The good candidates for the materials of such impurities are well-investigated fluorides and oxides doped by rare-earth elements (RE) or other luminescent chalcogenides such as sulfides, selenides and tellurides. Here we briefly review recent achievements in fabrication and properties of these new luminescent diamond-RE composites, compare them with luminescent properties of doped diamond, and outline prospects for applications of the luminescent diamond composites for photonics, markers, monitors of high-power synchrotron, X-ray beams and X-ray lasers.

Keywords

Diamond; polycrystalline films; composites; CVD growth; rare earth elements; X-ray luminescence

References

  • Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J Phys D: Appl Phys. 2020;53(9):093001.
  • Geis MW, Wade TC, Wuorio CH, et al. Progress toward diamond power field-effect transistors. Phys Status Solidi A. 2018;215(22):1800681.
  • Lu W, Li J, Miao J, et al. Application of high-thermal-conductivity diamond for space phased array antenna. Funct Diam. 2021;1(1):189–196.
  • Berdermann E, Afanaciev K, Ciobanu M, et al. Progress in detector properties of heteroepitaxial diamond grown by chemical vapor deposition on Ir/YSZ/Si (001) wafers. Diam Relat Mater. 2019;97:107420.
  • Liu K, Dai B, Ralchenko V, et al. Single crystal diamond UV detector with a groove-shaped electrode structure and enhanced sensitivity. Sens Actuators Phys. 2017;259:121–126.
  • Bolshakov AP, Zyablyuk KN, Kolyubin VA, et al. Thin CVD diamond film detector for slow neutrons with buried graphitic electrode. Nucl Instrum Methods Phys Res Sect Accel Spectrometer Detect Assoc Equip. 2017;871:142–147.
  • Sousa VF, Silva FJ. Recent advances on coated milling tool technology—a comprehensive review. Coatings. 2020;10(3):235.
  • Wang H, Yang J, Sun F. Cutting performances of MCD, SMCD, NCD and MCD/NCD coated tools in high-speed milling of hot bending graphite molds. J Mater Process Technol. 2020;276:116401.
  • Williams RJ, Kitzler O, Bai Z, et al. High power diamond raman lasers. IEEE J Select Topics Quantum Electron. 2018;24(5):1–14.
  • Mildren RP, Sabella A, Kitzler O, et al. Diamond raman laser design and performance. In: Optical engineering of diamond. Germany: John Wiley & Sons, Ltd; 2013. pp. 239–276. https://doi.org/10.1002/9783527648603.ch8.
  • Zaitsev AM. Optical properties of diamond: a data handbook. Germany: Springer Science & Business Media; 2013.
  • Nunn N, Shames AI, Torelli M, et al. A platform for next generation nanoscale optically driven quantum sensors. in: Luminescent nanomaterials, Singapore: Jenny Stanford Publishing; 2022. pp. 1–95.
  • Achard J, Jacques V, Tallaire A. Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications. J Phys D: Appl Phys. 2020;53(31):313001.
  • Osterkamp C, Balasubramanian P, Wolff G, et al. Benchmark for synthesized diamond sensors based on isotopically engineered Nitrogen-Vacancy spin ensembles for magnetometry applications. Adv Quantum Tech. 2020;3(9):2000074.
  • Trofimov SD, Tarelkin SA, Bolshedvorskii SV, et al. Spatially controlled fabrication of single NV centers in IIa HPHT diamond. Opt Mater Express. 2020;10(1):198–207.
  • Rogers LJ, Jahnke KD, Teraji T, et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun. 2014;5:1–6.
  • Sedov V, Ralchenko V, Khomich AA, et al. Si-doped nano- and microcrystalline diamond films with controlled bright photoluminescence of silicon-vacancy color centers. Diam Relat Mater. 2015;56:23–28. https://doi.org/10.1016/j.diamond.2015.04.003.
  • Ralchenko VG, Sedov VS, Martyanov AK, et al. Monoisotopic ensembles of silicon-vacancy color centers with narrow-line luminescence in homoepitaxial diamond layers grown in H2–CH4–xSiH4 gas mixtures (x= 28, 29, 30). ACS Photonics. 2019;6(1):66–72.
  • Ralchenko VG, Sedov VS, Khomich AA, et al. Observation of the Ge-vacancy color center in microcrystalline diamond films. Bull Lebedev Phys Inst. 2015;42(6):165–168.
  • Iwasaki T, Ishibashi F, Miyamoto Y, et al. Germanium-Vacancy single color centers in diamond. Sci Rep. 2015;5:12882.
  • Palyanov YN, Kupriyanov IN, Borzdov YM, et al. Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond. Sci Rep. 2015;5:1–8.
  • Sedov V, Martyanov A, Savin S, et al. Growth of polycrystalline and single-crystal CVD diamonds with bright photoluminescence of Ge-V color centers using germane GeH4 as the dopant source. Diam Relat Mater. 2018;90:47–53. https://doi.org/10.1016/j.diamond.2018.10.001.
  • Razgulov AA, Lyapin SG, Novikov AP, et al. Low-temperature photoluminescence study of GeV centres in HPHT diamond. J Lumin. 2022;242:118556.
  • Rabeau JR, Chin YL, Prawer S, et al. Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition. Appl Phys Lett. 2005;86(13):131926.
  • Beha K, Fedder H, Wolfer M, et al. Diamond nanophotonics. Beilstein J Nanotechnol. 2012;3:895–908.
  • Shames AI, Dalis A, Greentree AD, et al. Near-infrared fluorescence from silicon-and nickel-based color centers in high-pressure high-temperature diamond micro-and nanoparticles. Adv Optical Mater. 2020;8(23):2001047.
  • Bradac C, Gao W, Forneris J, et al. Quantum nanophotonics with group IV defects in diamond. Nat Commun. 2019;10:1–13.
  • Liu K, Zhang S, Ralchenko V, et al. Tailoring of typical color centers in diamond for photonics. Adv Mater. 2021;33(6):2000891.
  • Pezzagna S, Meijer J. Quantum computer based on color centers in diamond. Appl Phys Rev. 2021;8(1):011308.
  • Rondin L, Tetienne J-P, Hingant T, et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep Prog Phys. 2014;77(5):056503.
  • Barry JF, Schloss JM, Bauch E, et al. Sensitivity optimization for NV-diamond magnetometry. Rev Mod Phys. 2020;92(1):015004.
  • Plakhotnik T. Diamonds for quantum nano sensing. Curr Opin Solid State Mater Sci. 2017;21(1):25–34.
  • Sotoma S, Epperla CP, Chang H-C. Diamond nanothermometry. ChemNanoMat. 2018;4(1):15–27.
  • Romshin AM, Zeeb V, Martyanov AK, et al. A new approach to precise mapping of local temperature fields in submicrometer aqueous volumes. Sci Rep. 2021;11(1):14228. https://doi.org/10.1038/s41598-021-93374-7.
  • Barnard AS. Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst. 2009;134(9):1751. https://doi.org/10.1039/b908532g.
  • Hui YY, Cheng C-L, Chang H-C. Nanodiamonds for optical bioimaging. J Phys D: Appl Phys. 2010;43(37):374021. https://doi.org/10.1088/0022-3727/43/37/374021.
  • Shigley JE, Breeding CM. Optical defects in diamond: a quick reference chart. G&G. 2013;49(2):107–111.
  • Lai MY, Breeding CM, Stachel T, et al. Spectroscopic features of natural and HPHT-treated yellow diamonds. Diam Relat Mater. 2020;101:107642.
  • Overton TW, Shigley JE. A history of diamond treatments. In: The global diamond industry. UK: Springer; 2008. pp. 181–228.
  • Mironov VP, Emelyanova AS, Shabalin SA, et al. X-ray luminescence in diamonds and its application in industry. In: AIP conference proceedings, USA: AIP Publishing LLC; 2021. p. 020010.
  • Windischmann H, Epps GF. Properties of diamond membranes for X‐ray lithography. J Appl Phys. 1990;68(11):5665–5673. https://doi.org/10.1063/1.346981.
  • Salvatori S, Girolami M, Oliva P, et al. Diamond device architectures for UV laser monitoring. Laser Phys. 2016;26(8):084005.
  • Kudo T, Takahashi S, Nariyama N, et al. Synchrotron radiation X-ray beam profile monitor using chemical vapor deposition diamond film. Rev Sci Instrum. 2006;77(12):123105. https://doi.org/10.1063/1.2403843.
  • Kononenko T, Ralchenko V, Bolshakov A, et al. All-carbon detector with buried graphite pillars in CVD diamond. Appl Phys A. 2014;114(2):297–300.
  • Conte G, Allegrini P, Pacilli M, et al. Three-dimensional graphite electrodes in CVD single crystal diamond detectors: Charge collection dependence on impinging β-particles geometry. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2015;799:10–16.
  • Osadchy AV, Vlasov II, Kudryavtsev OS, et al. Luminescent diamond window of the sandwich type for X-ray visualization. Appl Phys A. 2018;124(12):5.
  • Burns RC, Hansen JO, Spits RA, et al. Growth of high purity large synthetic diamond crystals. Diam Relat Mater. 1999;8(8-9):1433–1437.
  • Bormashov VS, Tarelkin SA, Buga SG, et al. Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam Relat Mater. 2013;35:19–23.
  • Palyanov YN, Kupriyanov IN, Khokhryakov AF, et al. Crystal growth of diamond. In: Handbook of crystal growth. Netherlands: Elsevier Science Inc.; 2015. pp. 671–713.
  • Lysakovskyi VV, Novikov NV, Ivakhnenko SA, et al. Growth of structurally perfect diamond single crystals at high pressures and temperatures. Review. J Super­hard Mater. 2018;40(5):315–324.
  • Balmer RS, Brandon JR, Clewes SL, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications. J Phys: Condens Matter. 2009;21(36):364221.
  • Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017;7:44462. https://doi.org/10.1038/srep44462.
  • Sedov VS, Martyanov AK, Khomich AA, et al. Deposition of diamond films on Si by microwave plasma CVD in varied CH4-H2 mixtures: Reverse nanocrystalline-to-microcrystalline structure transition at very high methane concentrations. Diam Relat Mater. 2020;109:108072.
  • Arnault J-C, Saada S, Ralchenko V. CVD grown single crystal diamond: a review. Phys Status Solidi RRL-Rapid Res Lett. 2022;16(1):2100354. https://doi.org/10.1002/pssr.202100354
  • Sedov VS, Vlasov II, Ralchenko VG, et al. Gas-phase growth of silicon-doped luminescent diamond films and isolated nanocrystals. Bull Lebedev Phys Inst. 2011;38(10):291–296. https://doi.org/10.3103/S1068335611100034.
  • Musale DV, Sainkar SR, Kshirsagar ST. Raman, photoluminescence and morphological studies of Si- and N-doped diamond films grown on Si(100) substrate by hot-filament chemical vapor deposition technique. Diam Relat Mater. 2002;11(1):75–86. https://doi.org/10.1016/S0925-9635(01)00521-0.
  • Grudinkin SA, Feoktistov NA, Medvedev AV, et al. Luminescent isolated diamond particles with controllably embedded silicon-vacancy colour centres. J Phys D: Appl Phys. 2012;45(6):062001.
  • Zhong T, Goldner P. Emerging rare-earth doped material platforms for quantum nanophotonics. Nano­photonics. 2019;8(11):2003–2015.
  • Vanpoucke DE, Nicley SS, Raymakers J, et al. Can europium atoms form luminescent centres in diamond: a combined theoretical–experimental study. Diam Relat Mater. 2019;94:233–241.
  • Palyanov YN, Borzdov YM, Kupriyanov IN, et al. Rare-earth metal catalysts for high-pressure synthesis of rare diamonds. Sci Rep. 2021;11:1–11.
  • Palyanov YN, Borzdov YM, Khokhryakov AF, et al. High-pressure synthesis and characterization of diamond from europium containing systems. Carbon. 2021;182:815–824.
  • Cajzl J, Akhetova B, Nekvindová P, et al. Co-implantation of Er and Yb ions into single-crystalline and nano-crystalline diamond. Surf Interface Anal. 2018;50(11):1218–1223.
  • Ekimov EA, Zibrov IP, Malykhin SA, et al. Synthesis of diamond in double carbon-rare earth element systems. Mater Lett. 2017;193:130–132.
  • Khokhryakov AF, Borzdov YM, Kupriyanov IN. High-pressure diamond synthesis in the presence of rare-earth metals. J Cryst Growth. 2020;531:125358.
  • Magyar A, Hu W, Shanley T, et al. Synthesis of luminescent europium defects in diamond. Nat Commun. 2014;5:1–6.
  • Sedov VS, Kuznetsov SV, Ralchenko VG, et al. Diamond-EuF3 nanocomposites with bright orange photoluminescence. Diam Relat Mater. 2017;72:47–52.
  • Bolshakov AP, Ralchenko VG, Yurov VY, et al. High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation. Diam Relat Mater. 2016;62:49–57.
  • Padture NP, Klemens PG. Low thermal conductivity in garnets. J Am Ceram Soc. 2005;80(4):1018–1020.
  • Wu J, Wei X, Padture NP, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc. 2004;85(12):3031–3035.
  • Dieke GH. Spectra and energy levels of rare earth ions in crystals. 1968.
  • Withnall R, Silver J. Physics of light emission from Rare-Earth doped phosphors. In: Chen J, Cranton W, Fihn M, editors. Handbook of visual display technology. Berlin: Springer, Berlin, Heidelberg; 2012. pp. 1019–1028. https://doi.org/10.1007/978-3-540-79567-4_68.
  • Runowski M, Stopikowska N, Lis S. UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides. Dalton Trans. 2020;49(7):2129–2137.
  • Madirov EI, Konyushkin VA, Nakladov AN, et al. An up-conversion luminophore with high quantum yield and brightness based on BaF 2: Yb 3+, Er 3+ single crystals. J Mater Chem C. 2021;9(10):3493–3503.
  • Ermakova YA, Pominova DV, Voronov VV, et al. Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates. J Fluor Chem. 2020;237:109607.
  • Nizamutdinov AS, Kuznetsov SV, Madirov EI, et al. UV to IR down-conversion luminescence in novel Ba4Y3F17: Yb: Ce solar spectrum sensitizer for silicon solar cells. Opt Mater. 2020;108:110185.
  • Lyapin AA, Gushchin SV, Ermakov AS, et al. Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors. Chin Opt Lett. 2018;16:091901.
  • Kuznetsov S, Ermakova Y, Voronov V, et al. Up-conversion quantum yields of SrF 2: Yb 3+, Er 3+ Sub-micron particles prepared by precipitation from aqueous solution. J Mater Chem C. 2018;6(3):598–604.
  • Withnall R, Silver J. Luminescence of phosphors., In: Chen J, Cranton W, Fihn M, editors. Handbook of visual display technology. Cham: Springer International Publishing, 2016. pp. 1559–1565. https://doi.org/10.1007/978-3-319-14346-0_67.
  • Sobolev BP. The rare earth trifluorides: the high temperature chemistry of the rare earth trifluorides., Spain: Institut d’Estudis Catalans, 2000.
  • Sobolev BP. The rare earth trifluorides. Part 2. Introduction to materials science of multicomponent metal fluoride crystals. Institute of Crystallography, Moscow, 2001.
  • Wang L, Li P, Li Y. Down-and up-conversion luminescent nanorods. Adv Mater. 2007;19(20):3304–3307.
  • Silver J, Withnall R. Chemistry and synthesis of inorganic light emitting phosphors. In: Chen J, Cranton W, Fihn M, editors. Handbook of visual display technology. Cham: Springer, Berlin, Heidelberg, 2012. pp. 1029–1039. https://doi.org/10.1007/978-3-540-79567-4_69.
  • Fedorov PP, Luginina AA, Kuznetsov SV, et al. Nanofluorides. J Fluor Chem. 2011;132(12):1012–1039. https://doi.org/10.1016/j.jfluchem.2011.06.025.
  • Tian F, Chen C, Liu Q, et al. Optimizing co-precipitated Nd: YAG nanopowders for transparent ceramics. Opt Mater. 2020;108:110427.
  • Zhou D, Li X, Wang T, et al. Fabrication and Magneto-Optical property of (Dy0. 7Y0. 25La0. 05) 2O3 transparent ceramics by PLSH technology. Magnetochemi­stry. 2020;6(4):70.
  • Permin DA, Balabanov SS, Novikova AV, et al. Fabrication of Yb-doped Lu2O3-Y2O3-La2O3 solid solutions transparent ceramics by self-propagating high-temperature synthesis and vacuum sintering. Ceram Int. 2019;45(1):522–529.
  • Yang X-W, Wang X-P, Wang L-J. Effect of MoS2 film thickness on electroluminescence performance of diamond/boron/MoS2/diamond composite films. Diam Relat Mater. 2021;114:108331.
  • He Y, Liu K, Xiang B, et al. An overview on transparent ceramics with pyrochlore and fluorite structures. J Adv Dielect. 2020;10(03):2030001.
  • Xiao Z, Yu S, Li Y, et al. Materials development and potential applications of transparent ceramics: a review. Mater Sci Eng R Rep. 2020;139:100518.
  • Kuznetsov SV, Alexandrov AA, Fedorov PP. Optical fluoride nanoceramics. Inorg Mater. 2021;57(6):555–578.
  • Chen J-X, Wang X-P, Wang L-J, et al. White electroluminescence of diamond/HoF3/diamond composite film. J Lumin. 2020;224:117310.
  • Chen H-J, Wang X-P, Wang L-J, et al. Bright blue electroluminescence of diamond/CeF3 composite films. Carbon. 2016;109:192–195.
  • Burikov SA, Kotova OD, Sarmanova OE, et al. Determining the photophysical parameters of NaGdF4: Eu solid solutions in suspensions using the judd—ofelt theory. Jetp Lett. 2020;111(9):525–531.
  • Kuznetsov SV, Ovsyannikova AA, Tupitsyna EA, et al. Phase formation in LaF3–NaGdF4, NaGdF4–NaLuF4, and NaLuF4–NaYF4 systems: Synthesis of powders by co-precipitation from aqueous solutions. J Fluor Chem. 2014;161:95–101. https://doi.org/10.1016/j.jfluchem.2014.02.011.
  • Fedorov PP, Osiko VV, Kuznetsov SV, et al. Nucleation and growth of fluoride crystals by agglomeration of the nanoparticles. J Cryst Growth. 2014;401:63–66.
  • Bihari B, Eilers H, Tissue BM. Spectra and dynamics of monoclinic Eu2O3 and Eu3+: Y2O3 nanocrystals. J Lumin. 1997;75(1):1–10.
  • Wantana N, Kaewnuam E, Ruangtaweep Y, et al. High density tungsten gadolinium borate glasses doped with Eu3+ ion for photonic and scintillator applications. Radiat Phys Chem. 2020;172:108868. https://doi.org/10.1016/j.radphyschem.2020.108868.
  • Li B, Huang X, Guo H, et al. Energy transfer and tunable photoluminescence of LaBWO6: Tb3+, Eu3+ phosphors for near-UV white LEDs. Dyes Pigments. 2018;150:67–72.
  • Guo H, Huang X, Zeng Y. Synthesis and photoluminescence properties of novel highly thermal-stable red-emitting Na3Sc2 (PO4) 3: Eu3+ phosphors for UV-excited white-light-emitting diodes. J Alloys Compd. 2018;741:300–306.
  • Görller-Walrand C, Binnemans K. Spectral intensities of ff transitions. Handb Phys Chem Rare Earths. 1998;25:101–264.
  • Wen H, Jia G, Duan C-K, et al. Understanding Eu3+ emission spectra in glass. Phys Chem Chem Phys. 2010;12(33):9933–9937.
  • Sedov V, Kouznetsov S, Martyanov A, et al. Diamond–rare earth composites with embedded NaGdF4: Eu nanoparticles as robust photo-and X-ray-Luminescent materials for radiation monitoring screens. ACS Appl Nano Mater. 2020;3(2):1324–1331.
  • van Loef E, Dorenbos P, van Eijk C, et al. Scintillation properties of LaBr3:Ce3+ crystals: fast, efficient and high-energy-resolution scintillators. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip. 2002;486(1-2):254–258. https://doi.org/10.1016/S0168-9002(02)00712-X.
  • Kim HJ, Rooh G, Kim S. Tl2LaCl5 (Ce3+): new fast and efficient scintillator for X- and γ-ray detection. J Lumin. 2017;186:219–222. https://doi.org/10.1016/j.jlumin.2017.02.042.
  • Valiev D, Han T, Vaganov V, et al. The effect of Ce3+ concentration and heat treatment on the luminescence efficiency of YAG phosphor. J Phys Chem Solids. 2018;116:1–6. https://doi.org/10.1016/j.jpcs.2018.01.007.
  • Ahmadi H, Bagherzadeh M, Raeisi M, et al. Preparation and characterization and photoluminescence properties of CeF 3@ ZnS nanocomposites. J Mater Sci: Mater Electron. 2020;31(4):3215–3220.
  • Pan Y, Wu M, Su Q. Tailored photoluminescence of YAG:Ce phosphor through various methods. J Phys Chem Solids. 2004;65(5):845–850. https://doi.org/10.1016/j.jpcs.2003.08.018.
  • Liu Y, Zou J, Shi M, et al. Effect of gallium ion content on thermal stability and reliability of YAG: Ce phosphor films for white LEDs. Ceram Int. 2018;44(1):1091–1098. https://doi.org/10.1016/j.ceramint.2017.10.056.
  • Sedov V, Kuznetsov S, Kamenskikh I, et al. Diamond composite with embedded YAG: Ce nanoparticles as a source of fast X-ray luminescence in the visible and near-IR range. Carbon. 2021;174:52–58.
  • Spassky D, Kozlova N, Zabelina E, et al. Influence of the Sc cation substituent on the structural properties and energy transfer processes in GAGG:Ce crystals. CrystEngComm. 2020;22(15):2621–2631. https://doi.org/10.1039/D0CE00122H.
  • Bolshakov A, Ralchenko V, Sedov V, et al. Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane. Phys Status Solidi A. 2015;212(11):2525–2532.
  • Kuznetsov S, Sedov V, Martyanov A, et al. X-ray luminescence of diamond composite films containing yttrium-aluminum garnet nanoparticles with varied composition of Sc–Ce doping. Ceram Int. 2021;47(10):13922–13926.
  • Kuznetsov SV, Sedov VS, Martyanov AK, et al. Cerium-doped gadolinium-scandium-aluminum garnet powders: Synthesis and use in X-ray luminescent diamond composites. Ceram Int. 2022;48(9):12962–12970.
  • Sedov V, Voronin A, Komlenok M, et al. Laser-Assisted formation of High-Quality polycrystalline diamond membranes. J Russ Laser Res. 2020;41(3):321–326.
  • Jiang X, Klages C-P. Synthesis of diamond/β-SiC composite films by microwave plasma assisted chemical vapor deposition. Appl Phys Lett. 1992;61(14):1629–1631. https://doi.org/10.1063/1.108458.
  • Zhuang H, Jiang X. Growth controlling of diamond and β-SiC microcrystals in the diamond/β-SiC composite films. Surf Coat Technol. 2014;249:84–89. https://doi.org/10.1016/j.surfcoat.2014.03.053.
  • Sedov VS, Martyanov AK, Khomich AA, et al. Co-deposition of diamond and β-SiC by microwave plasma CVD in H2-CH4-SiH4 gas mixtures. Diam Relat Mater. 2019;98:107520.
  • Ralchenko V, Sedov V, Martyanov A, et al. Diamond-germanium composite films grown by microwave plasma CVD. Carbon. 2022;190:10–21.
  • Jiang X, Zhuang H, Fu H. Diamond/β-SiC composite films. In Novel carbon materials and composites. USA: John Wiley & Sons Ltd, 2019. pp. 169–203. https://doi.org/10.1002/9781119313649.ch6.
  • Yang B, Li H, Yu B, et al. Bright silicon vacancy centers in diamond/SiC composite films synthesized by a MPCVD method. Carbon. 2021;171:455–463.
  • Neu E, Arend C, Gross E, et al. Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. Appl Phys Lett. 2011;98(24):243107.
  • Zhuang H, Yang N, Fu H, et al. Diamond network: template-free fabrication and properties. ACS Appl Mater Interfaces. 2015;7(9):5384–5390.
1205
Favorite
Share

Related articles