Skip to main content

Research progress of diamond/aluminum composite interface design

Zengkai Jiao ,
Huiyuan Kang ,
Bo Zhou ,
Aolong Kang ,
Xi Wang ,
Haichao Li ,
Zhiming Yu ,
Li Ma ,
Kechao Zhou ,
Qiuping Wei
+ 2 authors fewer
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2050953

Abstract

Diamond/aluminum composite material has the advantages of high thermal conductivity, low expansion, and lightweight, which has a wide range of application prospects in the field of electronic packaging thermal management. However, the serious interface problems between diamond and aluminum limit the full play of the thermal conductivity of composite materials. A reasonable interface design can maximize the thermal conductivity of composite materials. This article focuses on the interface modification of diamond/aluminum composites, briefly describing the theoretical basis of interface design, the research status of interface modification, interface reaction and composite stability, and prospects for diamond/aluminum composites material development.

Keywords

Diamond/aluminum composite; interface modification; thermal conductivity; thermal expansion coefficient

References

  • Edwards C. Moore’s law: What comes next?. Commun ACM. 2021; 64(2):12–14.
  • Grier DA. Forgetting Moore’s law. Computer. 2021; 54(6):46–48.
  • Waldrop MM. The chips are down for Moore’s law. Nature. 2016; 530(7589):144–147.
  • Xingcun T. Advanced materials for thermal management of electronic packaging. Springer New York, 2011.
  • Zhou HY, Li YQ, Wang HM, et al. Fabrication of functionally graded diamond/Al composites by Liquid-Solid separation technology. Materials. 2021; 14(12):3205.
  • Zhou HY, Ran MR, Li YQ, et al. Effect of diamond particle size on the thermal properties of diamond/Al composites for packaging substrate. Acta Metall Sinica. 2021; 57(7):937–947.
  • Zhou HY, Ran MR, Li YQ, et al. Improvement of thermal conductivity of diamond/Al composites by optimization of liquid-solid separation process. J Mater Process Technol. 2021; 297:117267.
  • Xie HN, Chen YT, Zhang TB, et al. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: a first principles study [J]. Appl Surf Sci. 2020; 527:146817.
  • Hasselman DPH, Johnson LF. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater. 1987; 21(6):508–515.
  • T R, M JM, W L. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast. Scr Mater. 2006; 56(5).
  • Molina J-M, Rhême M, Carron J, et al. Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles. Scr Mater. 2008;58(5):393–396.
  • Zhang L. Research on configuration design, preparation and thermal conductivity of diamond aluminum composite. Central South University, 2019. (In Chinese).
  • Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scr Mater. 2015; 109:72–75.
  • Tan Z, Li Z, Xiong D-B, et al. A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites. Materials & Design. 2014; 55:257–262.
  • Yuan M, Tan Z, Fan G, et al. Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites. Diamond Relat Mater. 2018; 81:38–44.
  • Fathzadeh M, Fahrvandi H, Nadimi E. Electronic properties of graphene-ZnO interface: a density functional theory investigation. Nanotechnology. 2020; 31(2):025710.
  • Chen L, Chen ST, Hou Y. Understanding the thermal conductivity of diamond/copper composites by first-principles calculations. Carbon. 2019; 148:249–257.
  • Zhao ZY, Zhao WJ, Bai PK, et al. The interfacial structure of Al/Al4C3 in graphene/Al composites prepared by selective laser melting: First-principles and experimental. Mater Lett. 2019; 255:126559.
  • Zhang H, Huang Y, et al. First-principles study of Al atom diffusion kinetics on Si surface. J Phys. 2019; 68(20):274–282. (In Chinese)
  • Zhu P, Zhang Q, et al. First-principles calculation and interface reaction of diamond/aluminum composite material interface properties. J Phys. 2021;70(17):263–273. (In Chinese)
  • Sznajder M. DFT-based modelling of carbon adsorption on the AlN surfaces and influence of point defects on the stability of diamond/AlN interfaces. Diamond Relat Mater. 2020; 103:107694.
  • Wang C, Liang SH, Jiang YH. In-situ fabrication and characteristics of an Al4W/Al12W composite using infiltration method. Vacuum. 2019; 160:95–101.
  • Wang C, Liang SH, Cui J, et al. First-principles study of the mechanical and thermodynainic propertips of Al4W, Al5W and Al12W under pressure. Vacuum. 2019; 169:108844.
  • Song C, Kong XS, Liu CS. First-principles studies on carbon diffusion in tungsten. Chinese Phys B. 2019; 28(11):116106.
  • Yi HX, Wang JC, et al. First-principles calculations of the structure, mechanics, electronics, optics and thermodynamic properties of tungsten carbide crystals under high temperature and high pressure. J Phys. 2020; 37(02):239–249. (In Chinese)
  • Gu KX, Pang MJ, Zhan YZ. Insight into interfacial structure and bonding nature of diamond(001)/Cr3C2(001) interface. J Alloys Compd. 2019; 770:82–89.
  • Pang XZ, Yang XY, Yang JB, et al. Investigation on the interface characteristic between ZrC (111) and diamond (111) surfaces by first-principles calculation. Diamond Relat Mater. 2021; 113:108297.
  • Wu ZX, Zhan YZ, Xiong L, et al. Properties and electronic structure of Al/Mo2C interfaces: insights from first principle simulation. Philos Mag. 2021; 101(9):1061–1080.
  • Chen G, Yang W, Xin L, et al. Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method. J Alloys Compd. 2018; 735:777–786.
  • Ji G, Tan Z, Lu Y, et al. Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite. Mater Charact. 2016; 112:129–133.
  • Yang W, Chen G, Wang P, et al. Enhanced thermal conductivity in diamond/aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method. J Alloys Compd. 2017; 726:623–631.
  • Che Z, Li J, Wang Q, et al. The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites. Compos Part A: Appl Sci Manuf. 2018; 107:164–170.
  • Xin L, Tian X, Yang W, et al. Enhanced stability of the diamond/Al composites by W coatings prepared by the magnetron sputtering method. J Alloys Compd. 2018; 763:305–313.
  • Zhang C, Cai Z, Wang R, et al. Microstructure and thermal properties of Al/W-coated diamond composites prepared by powder metallurgy. Mater Design. 2016; 95:39–47.
  • Che Z, Wang Q, Wang L, et al. Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration. Compos Part B: Eng. 2017; 113:285–290.
  • Wu JH, Zhang HL, Zhang Y, et al. The role of Ti coating in enhancing tensile strength of Al/diamond composites. Mater Sci Eng – Struct Mater Prop Microstruct Process. 2013; 565:33–37.
  • Liang X, Jia C, Chu K, et al. Thermal conductivity and microstructure of Al/diamond composites with Ti-coated diamond particles consolidated by spark plasma sintering [J]. J Compos Mater. 2012; 46(9):1127–1136.
  • Yang B, Yu J-K, Chen C. Microstructure and thermal expansion of Ti coated diamond/Al composites. Trans Nonferrous Metals Soc China. 2009; 19(5):1167–1173.
  • Zhang H, Wu J, Zhang Y, et al. Mechanical properties of diamond/Al composites with Ti-coated diamond particles produced by gas-assisted pressure infiltration. Mater Sci Eng A. 2015; 626:362–368.
  • Ma S, Zhao N, Shi C, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl Surf Sci. 2017; 402:372–383.
  • Xie H, Chen Y, Zhang T, et al. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: a first principles study. Appl Surf Sci. 2020; 527:146817.
  • Sun Y, Zhang C, He L, et al. Enhanced bending strength and thermal conductivity in diamond/Al composites with B4C coating. Sci Rep. 2018; 8(1):11104.
  • Li N, Wang L, Dai J, et al. Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles. Diamond Relat Mater. 2019; 100:107565.
  • Li X, Yang W, Sang J, et al. Low-temperature synthesizing SiC on diamond surface and its improving effects on thermal conductivity and stability of diamond/Al composites. J Alloys Compd. 2020; 846:156258.
  • Guo C, He X, Ren S, et al. Effect of (0–40) wt. % Si addition to Al on the thermal conductivity and thermal expansion of diamond/Al composites by pressure infiltration. J Alloys Compd. 2016; 664:777–783.
  • Mizuuchi K, Inoue K, Agari Y, et al. Processing of diamond particle dispersed aluminum matrix composites in continuous solid–liquid co-existent state by SPS and their thermal properties. Compos Part B: Eng. 2011;42(4):825–831.
  • Edtmaier C, Segl J, Rosenberg E, et al. Microstructural characterization and quantitative analysis of the interfacial carbides in Al(Si)/diamond composites. J Mater Sci. 2018; 53(22):15514–15529.
  • Zhang Y, Li J, Zhao L, et al. Effect of metalloid silicon addition on densification, microstructure and thermal–physical properties of Al/diamond composites consolidated by spark plasma sintering. Mater Design. 2014;63:838–847.
  • Zhang H, Wu J, Zhang Y, et al. Effect of metal matrix alloying on mechanical strength of diamond Particle-Reinforced aluminum composites. J Mater Eng Perform. 2015; 24(6):2556–2562.
  • Liu XY, Wang WG, Wang D, et al. Effect of nanometer TiC coated diamond on the strength and thermal conductivity of diamond/Al composites. Mater Chem Phys. 2016; 182:256–262.
  • Guo C-Y, He X-B, Ren S-B, et al. Thermal properties of diamond/Al composites by pressure infiltration: comparison between methods of coating Ti onto diamond surfaces and adding Si into Al matrix. Rare Met. 2016; 35(3):249–255.
  • Monje IE, Louis E, Molina JM. On critical aspects of infiltrated Al/diamond composites for thermal management: Diamond quality versus processing conditions. Compos Part A: Appl Sci Manuf. 2014; 67:70–76.
  • Weber L, Tavangar R. Diamond-based metal matrix composites for thermal management made by liquid metal Infiltration-Potential and limits. Linsmeier C, Reinelt M, editor, 1st International Conference on New Materials for Extreme Environments, Stafa-Zurich: Trans Tech Publications Ltd, 2009, pp. 111–115.
  • Zhang Y, Li J, Zhao L, et al. Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure. J Mater Sci. 2015; 50(2):688–696.
  • Li C, Wang X, Wang L, et al. Interfacial characteristic and thermal conductivity of Al/diamond composites produced by gas pressure infiltration in a nitrogen atmosphere [J]. Mater Design. 2016; 92:643–648.
  • Long J, Li X, Fang D, et al. Fabrication of diamond particles reinforced Al-matrix composites by hot-press sintering. Int J Refract Met Hard Mater. 2013; 41:85–89.
  • Tan Z, Li Z, Fan G, et al. Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties. Compos Part B: Eng. 2013; 47:173–180.
  • Tan Z, Li Z, Fan G, et al. Diamond/aluminum composites processed by vacuum hot pressing: Microstructure characteristics and thermal properties. Diamond Relat Mater. 2013; 31:1–5.
  • Tan Z, Ji G, Addad A, et al. Tailoring interfacial bonding states of highly thermal performance diamond/Al composites: Spark plasma sintering vs. vacuum hot pressing. Compos Part A: Appl Sci Manuf. 2016; 91:9–19.
  • Mizuuchi K, Inoue K, Agari Y, et al. Thermal conductivity of diamond particle dispersed aluminum matrix composites fabricated in solid–liquid co-existent state by SPS. Compos Part B: Eng. 2011;42(5):1029–1034.
  • Beffort O, Khalid FA, Weber L, et al. Interface formation in infiltrated Al(Si)/diamond composites. Diamond Relat Mater. 2006; 15(9):1250–1260.
  • Wu JH, Zhang HL, Zhang Y, et al. Effect of copper content on the thermal conductivity and thermal expansion of Al-Cu/diamond composites. Mater Design. 2012; 39:87–92.
  • Wang P, Xiu Z, Jiang L, et al. Enhanced thermal conductivity and flexural properties in squeeze casted diamond/aluminum composites by processing control. Mater Design. 2015; 88:1347–1352.
  • Mizuuchi K, Inoue K, Agari Y, et al. Bimodal and monomodal diamond particle effect on the thermal properties of diamond-particle-dispersed Al–matrix composite fabricated by SPS. Microelectron Reliab. 2014;54(11):2463–2470.
  • Tan Z, Xiong D-B, Fan G, et al. Enhanced thermal conductivity of diamond/aluminum composites through tuning diamond particle dispersion. J Mater Sci. 2018; 53(9):6602–6612.
  • Chen PJ, Zeng YC, et al. Analysis of thermal conductivity of diamond/Al composites prepared by hot-press sintering and pressure infiltration. Funct Mater. 2016;47(10):10184–10188. (In Chinese)
  • Zhang L, Wei Q, An J, et al. Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management. Chem Eng J. 2020; 380:122551.
  • Liu RX, Luo GQ, Li Y, et al. Microstructure and thermal properties of diamond/copper composites with Mo2C in-situ nano-coating. Surf Coatings Technol. 2019; 360:376–381.
  • Ye W, Wei Q, Zhang L, et al. Macroporous diamond foam: a novel design of 3D interconnected heat conduction network for thermal management. Mater Design. 2018; 156:32–41.
  • An JJ, Wei QP, et al. Effect of surface modification of foamed copper on high quality foamed diamond by chemical vapor deposition. Surf Technol. 2020; 49(3):97–105. (In Chinese)
  • Maiorano LP, Molina JM. Guiding heat in active thermal management: One-pot incorporation of interfacial ­nano-engineered aluminium/diamond composites into aluminium foams. Compos Part A. 2020:133(2020):105859.
  • Philippe G, E KU, A KF, et al. Site-specific specimen preparation by focused ion beam milling for transmission electron microscopy of metal matrix composites. Microsc Microanal: Off J Microsc Soc Am. Microbeam Anal Soc Microscop Soc Canada. 2004; 10(2):311–316.
  • Khalid FA, Beffort O, Klotz UE, et al. Microstructure and interfacial characteristics of aluminium-diamond composite materials. Diamond Relat Mater. 2004; 13(3):393–400.
  • Monje IE, Louis E, Molina JM. Interfacial nano-engineering in Al/diamond composites for thermal management by in situ diamond surface gas desorption. Scr Mater. 2016;115:159–163.
  • Kleiner S, Khalid FA, Ruch PW, et al. Effect of diamond crystallographic orientation on dissolution and carbide formation in contact with liquid aluminium. Scr Mater. 2006; 55(4):291–294.
  • Che Z, Zhang Y, Li J, et al. Nucleation and growth mechanisms of interfacial Al4 C3 in Al/diamond composites. J Alloys Compd. 2016; 657:81–89.
  • Lu Y, Wang X, Zhang Y, et al. Aluminum carbide hydrolysis induced degradation of thermal conductivity and tensile strength in diamond/aluminum composite. J Compos Mater. 2018; 52(20):2709–2717.
  • Lu CJ, Lu Chenjun, Xu J, et al. Performance decline and suppression of diamond/Al (or AlSi alloy) composites. J Compos Mater. 2019; 36(03):669–676. (In Chinese)
1205
Favorite
Share

Related articles