Skip to main content

Recent progress in diamond radiation detectors

T. Shimaoka ,
S. Koizumi ,
J. H. ,
Kaneko
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2021.2017758

Abstract

This paper reviews recent progress in diamond radiation detectors. Diamond is an ultra-wide gap (5.5 eV) semiconducting material which has several ideal properties for radiation detectors, such as solar blindness, high temperature operation, and fast response. Furthermore, diamond has near tissue-equivalence due to its low atomic number (Z = 6) and chemical stability due to its strong covalent bonds. Because of these features, diamond has long been used as a radiation detector in the fields of nuclear engineering, nuclear fusion, high energy physics and medical therapy. Until the 1990s, most of the research was conducted using selected high purity natural diamonds. Since the 2000s, the detector characteristics of synthetic diamond detectors have been greatly improved by achieving high purity diamond by microwave plasma enhanced chemical vapor deposition (CVD). Single-crystal CVD diamonds present best characteristics for spectroscopy in diamond radiation detectors. For applications requiring large sensitive areas, polycrystalline CVD diamond is mostly used. Heteroepitaxial diamond detectors are a promising alternative to increase the area of spectroscopic diamond radiation detectors. For applications in extreme environments, high radiation flux which leads to polarization effects is a crucial issue. Even with diamond, which has excellent radiation hardness, degradation of detector characteristics due to irradiation is inevitable. Detectors designed with small carrier travel distances, such as membrane diamond detectors and three-dimensional diamond radiation detectors, are effective ways to mitigate the degradation.

Keywords

Radiation hardness; high temperature operation; spectroscopy; medical application; high energy physics; beam monitor

References

  • Tanimura Y, Kaneko J, Katagiri M, et al. High-temperature operation of a radiation detector made of a type IIa diamond single crystal synthesized by a HP/HT method. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2000;443:325–330.
  • Tsubota M, Kaneko JH, Miyazaki D, et al. High-temperature characteristics of charge collection efficiency using single CVD diamond detectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2015;789:50–56.
  • Gabrysch M, Majdi S, Twitchen DJ, et al. Electron and hole drift velocity in chemical vapor deposition diamond. J Appl Phys. 2011;109: 063719-1–063719-4
  • Marinelli M, Prestopino G, Tonnetti A, et al. A novel synthetic single crystal diamond device for in vivo dosimetry. Med Phys. 2015;42(8):4636–4644.
  • Asner D, Barbero M, Bellini V, et al. Diamond pixel modules. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2011;636:125.
  • Pompili F, Esposito B, Marocco D, et al. Radiation and thermal stress test on diamond detectors for the radial neutron camera of ITER. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2019;936:62–64.
  • Wooldridge DE, Ahearn AJ, Burton JA. Conductivity pulses induced in diamond by Alpha-Particles. Phys Rev. 1947;71(12):913–913.
  • Ahearn AJ. Conductivity induced in diamond by Alpha-Particle bombardment and its variation among specimens. Phys Rev. 1948;73(9):1113–1113.
  • Friedman H, Birks LS, Gauvin HP. Ultraviolet transmission of ‘counting’ diamonds. Phys Rev. 1948;73(2):186–187.
  • Kozlov SF, Belcarz E, Hage-Ali M, et al. Diamond nuclear radiation detectors. Nucl Instrum Methods. 1974;117(1):277–283.
  • Kamo M, Sato Y, Matsumoto S, et al. Diamond synthesis from gas phase in microwave plasma. J Cryst Growth. 1983;62(3):642–644.
  • Jany C, Foulon F, Bergonzo P, et al. Influence of CVD diamond film textures on the electrical response of radiation detectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 1996;380(1–2):107–111.
  • Pomorski M, Berdermann E, Caragheorgheopol A, et al. Development of single-crystal CVD-diamond detectors for spectroscopy and timing. Phys Stat Sol (a)). 2006;203(12):3152–3160.
  • Shimaoka T, Kaneko JH, Tsubota M, et al. High-performance diamond radiation detectors produced by lift-off method. EPL. 2016;113(6):62001.
  • Shockley W. Currents to conductors induced by a moving point charge. J Appl Phys. 1938;9(10):635–636.
  • Klein CA. Bandgap dependence and related features of radiation ionization energies in semiconductors. J Appl Phys. 1968;39(4):2029–2038.
  • Shimaoka T, Kaneko JH, Sato Y, et al. Fano factor evaluation of diamond detectors for alpha particles. Phys Status Solidi A. 2016;213(10):2629–2633.
  • Canali C, Gatti E, Kozlov SF, et al. Electrical properties and performances of natural diamond nuclear radiation detectors. Nucl Instrum Methods. 1979;160(1):73–77.
  • Kaneko JH, Tanaka T, Kawamura S, et al. Radiation detector made of a high-quality polycrystalline diamond. Diam Relat Mater. 2005;14(11–12):2027–2030.
  • Isberg J, Hammersberg J, Bernhoff H, et al. Charge collection distance measurements in single and polycrystalline CVD diamond. Diam Relat Mater. 2004;13(4-8):872–875.
  • Hecht K. Zum mechanismus des lichtelektrischen primärstromes in isolierenden kristallen. Z Physik. 1932;77(3–4):235–245.
  • Schmid GJ, Koch JA, Lerche RA, et al. A neutron sensor based on single crystal CVD diamond. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2004;527(3):554–561.
  • Konishi K, Akimoto I, Matsuoka H, et al. Low-temperature mobility-lifetime product in synthetic diamond. Appl Phys Lett. 2020;117(21):212102.
  • Pan LS, Kania DR, Pianetta P, et al. Temperature dependent mobility in single-crystal and chemical vapor-deposited diamond. J Appl Phys. 1993;73(6):2888–2894.
  • Isberg J, Lindblom A, Tajani A, et al. Temperature dependence of hole drift mobility in high-purity single-crystal CVD diamond. Phys Stat Sol (a)). 2005;202(11):2194–2198.
  • Kada W, Kambayashi Y, Ando Y, et al. Investigation of electrically-active deep levels in single-crystalline diamond by particle-induced charge transient spectroscopy. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2016;372:151–155.
  • Tarun A, Lee SJ, Yap CM, et al. Impact of impurities and crystal defects on the performance of CVD diamond detectors. Diam Relat Mater. 2016;63:169–174.
  • Lohstroh A, Sellin PJ, Wang SG, et al. Effect of dislocations on charge carrier mobility-lifetime product in synthetic single crystal diamond. Appl Phys Lett. 2007;90:102111-1–102111-3.
  • Schreck M, Ščajev P, Träger M, et al. Charge carrier trapping by dislocations in single crystal diamond. J Appl Phys. 2020;127(12):125102.
  • Gonon P, Prawer S, Jamieson D. Thermally stimulated currents in polycrystalline diamond films: Application to radiation dosimetry. Appl Phys Lett. 1997;70(22):2996–2998.
  • Wang S, Sellin P, Lohstroh A. Temperature-dependent hole detrapping for unprimed polycrystalline chemical vapor deposited diamond. Appl Phys Lett. 2006;88:1–3.
  • Bruzzi M, Menichelli D, Sciortino S, et al. Deep levels and trapping mechanisms in chemical vapor deposited diamond. J Appl Phys. 2002;91(9):5765–5774.
  • Balducci A, Marinelli M, Milani E, et al. Analysis of traps in CVD diamond films through thermal depumping of nuclear detectors. Phys Stat Sol (a)). 2004;201(11):2542–2547.
  • Yamada H, Chayahara A, Umezawa H, et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size. Diam Relat Mater. 2012;24:29–33.
  • Krasilnikov AV, Kaneko J, Isobe M, et al. Fusion neutronic source deuterium-tritium neutron spectrum measurements using natural diamond detectors. Rev Sci Instrum. 1997;68(4):1720–1724.
  • Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017;7(1):44462.
  • Kim S-W, Takaya R, Hirano S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (112̄0) misoriented substrate by step-flow mode. Appl Phys Express. 2021;14(11):115501.
  • Ichikawa K, Kurone K, Kodama H, et al. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diam Relat Mater. 2019;94:92–100.
  • Ohmagari S, Yamada H, Tsubouchi N, et al. Toward high‐performance diamond electronics: Control and annihilation of dislocation propagation by metal‐assisted termination. Phys Status Solidi A. 2019;216(21):1900498.
  • Mehmel L, Issaoui R, Brinza O, et al. Dislocation density reduction using overgrowth on hole arrays made in heteroepitaxial diamond substrates. Appl Phys Lett. 2021;118:061901-1– 061901-6.
  • Stehl C, Fischer M, Gsell S, et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Appl Phys Lett. 2013:103:151905-1–151905-4.
  • Koizumi S, Kamo M, Sato Y, et al. Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. Appl Phys Lett. 1997;71(8):1065–1067.
  • Koizumi S, Watanabe K, Hasegawa M, et al. Ultraviolet emission from a diamond pn junction. Science. 2001;292(5523):1899–1901.
  • Shimaoka T, Kuwabara D, Hara A, et al. Charge transport properties of intrinsic layer in diamond vertical pin diode. Appl Phys Lett. 2017;110(21):212104.
  • Holmes J, Dutta M, Koeck FA, et al. A 4.5 μm PIN diamond diode for detecting slow neutrons. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2018;903:297–301.
  • Holmes J, Brown J, Koeck FA, et al. Performance of 5-μm PIN diamond diodes as thermal neutron detectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2020;961:163601.
  • Kaneko JH, Teraji T, Imai T, et al. Development of layered type single crystalline diamond radiation detector as an energy spectrometer. J Nucl Sci Technol. 2008;45(sup5):391–394.
  • Almaviva S, Marinelli M, Milani E, et al. Chemical vapor deposition diamond based multilayered radiation detector: physical analysis of detection properties. J Appl Phys. 2010;107(1):014511.
  • Pomorski M, Caylar B, Bergonzo P. Super-thin single crystal diamond membrane radiation detectors. Appl Phys Lett. 2013;103(11):112106.
  • Skukan N, Sudić I, Pomorski M, et al. Enhanced radiation hardness and signal recovery in thin diamond detectors. AIP Adv. 2019;9:025027-1– 025027-3.
  • Parker SI, Kenney CJ, Segal J. 3D - a proposed new architecture for solid-state radiation detectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 1997;395(3):328–343.
  • Lagomarsino S, Bellini M, Corsi C, et al. Three-dimensional diamond detectors: Charge collection efficiency of graphitic electrodes. Appl Phys Lett. 2013:103:233507-1–233507-4.
  • Caylar B, Pomorski M, Bergonzo P. Laser-processed three dimensional graphitic electrodes for diamond radiation detectors. Appl Phys Lett. 2013;103:1–4.
  • Wulz T, Gerding W, Lavrik N, et al. Realization of deep 3D metal electrodes in diamond radiation detectors. Appl Phys Lett. 2018;112(22):222101.
  • Umezawa H, Nagase M, Kato Y, et al. High temperature application of diamond power device. Diam Relat Mater. 2012;24:201–205.
  • Crnjac A, Ramos MR, Skukan N, et al. Charge transport in single crystal CVD diamond studied at high temperatures. J Phys D: Appl Phys. 2021;54(46):465103.
  • Tsubota M, Kaneko JH, Shimaoka T, et al. High temperature operation of diamond radiation detectors. NEW Diam. 2018;34:36–38. in Japanese).
  • Garcia TR, Kumar A, Reinke B, et al. Electron-hole pair generation in SiC high-temperature alpha particle detectors. Appl Phys Lett. 2013;103152108-1–152108-4.
  • Summers GP, Burke EA, Dale CJ, et al. Correlation of particle-induced displacement damage in silicon. IEEE Trans Nucl Sci. 1987;34(6):1133–1139.
  • Summers GP, Burke EA, Shapiro P, et al. Damage correlations in semiconductors exposed to gamma, electron and proton radiations. IEEE Trans Nucl Sci. 1993;40(6):1372–1379.
  • Loferski JJ, Rappaport P. Radiation damage in Ge and Si detected by carrier lifetime changes: damage thresholds. Phys Rev. 1958;111(2):432–439.
  • Bourgoin JC, Massarani B. Threshold energy for atomic displacement in diamond. Phys Rev B. 1976;14(8):3690–3694.
  • Lucas G, Pizzagalli L. Ab initio molecular dynamics calculations of threshold displacement energies in silicon carbide. Phys Rev B - Condens Matter Mater Phys. 2005;72:161202-1–161202-4.
  • Xiao HY, Gao F, Zu XT, et al. Threshold displacement energy in GaN: Ab initio molecular dynamics study. J Appl Phys. 2009:105:123527-1–123527-5.
  • De Boer W, Bol J, Furgeri A, et al. Radiation hardness of diamond and silicon sensors compared. Phys Stat Sol (a)). 2007;204(9):3004–3010.
  • Guthoff M, De Boer W, Müller S. Simulation of beam induced lattice defects of diamond detectors using FLUKA. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2014;735:223–228.
  • Venturi N, Alexopoulos A, Artuso M, et al. Results on radiation tolerance of diamond detectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2019;924:241–244.
  • Grilj V, Skukan N, Jakšić M, et al. The evaluation of radiation damage parameter for CVD diamond. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms. 2016;372:161–164.
  • Holmes JM, Dutta M, Koeck FA, et al. Neutralizing the polarization effect of diamond diode detectors using periodic forward bias pulses. Diam Relat Mater. 2019;94:162–165.
  • Ueno K, Tadokoro T, Ueno Y, et al. Heat and radiation resistances of diamond semiconductor in gamma-ray detection. Jpn J Appl Phys. 2019;58:106509-1–106509-8.
  • Kaneko JH. Development of radiation-hard and high temperature operation diamond measurement system for innovation of nuclear reactor instrumentation. Annual Report of Innovative Nuclear Research and Development Program, MEXT Japan (in Japanese). 2020.
  • Umezawa H. Recent advances in diamond power semiconductor devices. Mater Sci Semicond Process. 2018;78:147–156.
  • Yamaguchi T, Umezawa H, Ohmagari S, et al. Radiation hardened H-diamond MOSFET (RADDFET) operating after 1 MGy irradiation. Appl Phys Lett. 2021;118:162105-1–162105-4.
  • Bergonzo P, Foulon F, Brambilla A, et al. Corrosion hard CVD diamond alpha particle detectors for nuclear liquid source monitoring. Diam Relat Mater. 2000;9(3–6):1003–1007.
  • Kamio S, Fujiwara Y, Ogawa K, et al. Neutron-induced signal on the single crystal chemical vapor deposition diamond-based neutral particle analyzer. Rev Sci Instrum. 2020;91:113304-1–113304-6.
  • Krasilnikov AV, Medley SS, Gorelenkov NN, et al. Tokamak fusion test reactor charge exchange atom spectrometry using a natural diamond detector. Rev Sci Instrum. 1999;70(1):1107–1110.
  • Shimaoka T, Kaneko JH, Ochiai K, et al. A diamond 14 MeV neutron energy spectrometer with high energy resolution. Rev Sci Instrum. 2016;87(2):023503.
  • Pillon M, Angelone M, Krasilniko AV. 14 MeV neutron spectra measurements using type IIa diamond detectors. Radiat Prot Dosimetry. 1996;66(1):371–374.
  • Medley SS, Mansfield DK, Roquemore AL, et al. Design and operation of the pellet charge exchange diagnostic for measurement of energetic confined α particles and tritons on the tokamak fusion test reactor. Rev Sci Instrum. 1996;67(9):3122–3135.
  • Verona C, Ciccognani W, Colangeli S, et al. 14.8-MeV neutron irradiation on H-terminated diamond-based MESFETs. IEEE Electron Device Letters 2016;37:1597–1600.
  • Morse J, Solar B, Graafsma H. Diamond X-ray beam-position monitoring using signal readout at the synchrotron radiofrequency. J Synchrotron Rad. 2010;17(4):456–464.
  • Sellin PJ, Vaitkus J. New materials for radiation hard semiconductor dectectors. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2006;557(2):479–489.
  • Aoyagi H, Asano Y, Itoga T, et al. Electron beam halo monitor for a compact x-ray free-electron laser. Phys Rev Spec Top - Accel Beams. 2013;16:032802-1–032802-10.
  • Trischuk W, Artuso M, Bachmair F, et al. Diamond particle detectors for high energy physics. Nucl Part Phys Proc. 2016;273-275:1023–1028.
  • Ciancaglioni I, Marinelli M, Milani E, et al. Dosimetric characterization of a synthetic single crystal diamond detector in clinical radiation therapy small photon beams. Med Phys. 2012;39(7Part1):4493–4501.
  • Di Venanzio C, Marinelli M, Milani E, et al. Characterization of a synthetic single crystal diamond schottky diode for radiotherapy electron beam dosimetry. Med Phys. 2013;40:021712-1–021712-9.
  • Zahradnik IA, Pomorski MT, De Marzi L, et al. scCVD diamond membrane based microdosimeter for hadron therapy. Phys Status Solidi Appl Mater Sci. 2018;215:1–10.
  • Verona C, Magrin G, Solevi P, et al. Toward the use of single crystal diamond based detector for ion-beam therapy microdosimetry. Radiat Meas. 2018;110:25–31.
  • Verona C, Cirrone GAP, Magrin G, et al. Microdosimetric measurements of a monoenergetic and modulated Bragg peaks of 62 MeV therapeutic proton beam with a synthetic single crystal diamond microdosimeter. Med Phys. 2020;47(11):5791–5801.
  • Rappaport P, Linder EG. Radioactive charging effects with a dielectric medium. J Appl Phys. 1953;24(9):1110–1114.
  • Spencer MG, Alam T. High power direct energy conversion by nuclear batteries. Appl Phys Rev. 2019;6(3):031305.
  • Cress CD, Landi BJ, Raffaelle RP, et al. InGaP alpha voltaic batteries: Synthesis, modeling, and radiation tolerance. J Appl Phys. 2006;100:114519-1–114519-5.
  • Butera S, Whitaker MDC, Krysa AB, et al. Temperature effects on an InGaP (GaInP) 55Fe X-ray photovoltaic cell. Sci Rep. 2017;7(1):8.
  • Chandrashekhar MVS, Thomas CI, Li H, et al. Demonstration of a 4H SiC betavoltaic cell. Appl Phys Lett. 2006;88:1–3.
  • Thomas C, Portnoff S, Spencer MG. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes. Appl Phys Lett. 2016;108(1):013505.
  • Maximenko SI, Moore JE, Affouda CA, et al. Optimal semiconductors for 3H and 63Ni betavoltaics. Sci Rep. 2019;9(1):10892.
  • Bormashov V, Troschiev S, Volkov A, et al. Development of nuclear microbattery prototype based on schottky barrier diamond diodes. Phys Status Solidi A. 2015;212(11):2539–2547.
  • Bormashov VSS, Troschiev SYY, Tarelkin SAA, et al. High power density nuclear battery prototype based on diamond schottky diodes. Diam Relat Mater. 2018;84:41–47.
  • Delfaure C, Pomorski M, De Sanoit J, et al. Single crystal CVD diamond membranes for betavoltaic cells. Appl Phys Lett. 2016;108:252105-1–252105-4.
  • Shimaoka T, Umezawa H, Ichikawa K, et al. Ultrahigh conversion efficiency of betavoltaic cell using diamond pn junction. Appl Phys Lett. 2020;117(10):103902.
3845
Favorite
Share

Related articles