Skip to main content

Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices

Liwen Sang
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2021.1980356

Abstract

With the increasing power density and reduced size of the GaN-based electronic power converters, the heat dissipation in the devices becomes the key issue toward the real applications. Diamond, with the highest thermal conductivity among all the natural materials, is of the interest for integration with GaN to dissipate the generated heat from the channel of the AlGaN/GaN high electron mobility transistors (HEMTs). Current techniques involve three strategies to fabricate the GaN-on-diamond wafers: bonding of GaN with diamond, epitaxial growth of diamond on GaN, and epitaxial growth of GaN on diamond. As a result of the large lattice mismatch and thermal mismatch, the integration of GaN-on-diamond wafer is suffered from stress, bow, crack, rough interfaces, and large thermal boundary resistance. The interfaces with transition or buffer layers impede the heat flow from the device channel and greatly influence the device performance. In this review, we summarize the three different techniques to achieve the GaN-on-diamond wafers for the fabrication of AlGaN/GaN HEMTs. The problems and challenges of each method are discussed. In addition, the effective thermal boundary resistance between GaN and diamond, which characterizes the heat concentration, is analyzed with regard to different integration and measurement methods.

Keywords

Semiconductor; Heat-related

References

  • Millan J, Godignon P, Perpina X, et al. A survey of wide bandgap power semiconductor devices. IEEE Trans Power Electron. 2014; 29(5):2155–2163.
  • Sang LW, Ren B, Endo E, et al. Boosting the doping efficiency of Mg in p-GaN grown on the free-standing GaN substrates. Appl Phys Lett. 2019; 115(17):172103.
  • Mishra UK, Shen L, Kazior TE, et al. GaN-based RF power devices and amplifiers. Proc IEEE. 2008; 96(2):387–305.
  • Ren B, Liao M, Sumiya M, et al. Nearly ideal vertical GaN Schottky barrier diodes with ultralow turn-on voltage and on-resistance. Appl Phys Express. 2017; 10(5):051001.
  • Zhang K, Sumiya M, Liao M, et al. P-channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas. Sci Rep. 2016; 6(1):23683.
  • Ambacher O. Growth and applications of group III nitrides. J Phys D Appl Phys. 1998; 31(20):2653–2710.
  • Mohammad SN, Morkoc H. Progress and prospects of group-III nitride semiconductors. Prog Quantum Electron. 1996; 20(5-6):361–525.
  • Mishra UK, Parikh P, Wu YF. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc IEEE. 2002; 90(6):1022–1031.
  • He JQ, Cheng WC, Wang Q, et al. Recent advances in GaN-based power HEMT devices. Adv Electron Mater. 2021; 7(4):2001045.
  • Pengelly RS, Wood SM, Milligan JW, et al. A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans Microwave Theory Techn. 2012; 60(6):1764–1783.
  • Wu YF, Kapolnek D, Ibbetson JP, et al. Very-high power density AlGaN/GaN HEMTs. IEEE Trans Electron Dev. 2001; 48(3):586–590.
  • Amano H, Baines Y, Beam E, et al. The 2018 GaN power electronics roadmap. J Phys D Appl Phys. 2018;51(16):163001.
  • Francis D, Wasserbauer J, Faili F, et al. GaN HEMT epilayers on diamond substrates. In: CS MANTECH Conference, May 14-17; Austin, Texas, USA; 2007.
  • Shibata H, Waseda Y, Ohta H, et al. High thermal conductivity of gallium nitride (GaN) crystals grown by HVPE process. Mater Trans. 2007; 48(10):2782–2786.
  • Wei R, Song S, Yang K, et al. Thermal conductivity of 4H-SiC single crystals. J Appl Phys. 2013;113(5):053503.
  • Liao M, Shen B, Wang Z. Ultra-wide bandgap semiconductor materials. Oxford (UK): Elsevier; 2019.
  • Inyushkin AV, Taldenkov AN, Ralchenko VG, et al. Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B. 2018; 97:144305.
  • Wort CJH, Sweeney CG, Cooper MA, et al. Thermal properties of bulk polycrystalline CVD diamond. Diamond Relat Mater. 1994; 3(9):1158–1167.
  • Liao M. Progress in semiconductor diamond photodetectors and MEMS sensors. Functional Diamond. 2021; 1:1(1):29–46.
  • Nochetto HC, Kankowski NR, Bar-Cohen A. GaN HEMT junction temperature dependence on diamond substrate anisotropy and thermal boundary resistance. In: 34th IEEE CSIC Symposium, Oct 14-17; La Jolla, CA; 2012. p. 1–4.
  • Salm RP. In thermal modelling of GaN HEMTs on sapphire and diamond in a MSEE Thesis document, Naval Postgraduate School, Monterey, CA; Dec 2005.
  • Mcglone D, Weatherford T, Gillespie J, et al. Electrical and thermal modelling of AlGaN/GaN HEMTS on diamond silicon substrates. In: IEEE ROCS Workship, Monterey, CA, USA; 2008. p. 3–14.
  • Ejeckam F, Francis D, Faili F, et al. GaN-on-Diamond wafers: a progress report. In: GOMACTech Mar 31-Apr 4, 2014. Conference Proceedings.
  • Gabler J, Pleger S. Precision and micro CVD diamond-coated grinding tools. Int J Mach Tools Manuf. 2010; 50(4):420–424.
  • von Witzendorff P, Moalem A, Kling R, et.al. Laser dressing of metal bonded diamond blades for cutting of hard brittle materials. J Laser Appl. 2012; 24(2):022002.
  • Zeren M, Karagoz S. Sintering of polycrystalline diamond cutting tools. Mater Des. 2007; 28(3):1055–1058.
  • Sexton TN, Cooley CH. Polycrystalline diamond thrust bearings for down-hole oil and gas drilling tools. Wear. 2009;267(5-8):1041–1045.
  • Schuelke T, Grotjohn TA. Diamond polishing. Diamond Relat Mater. 2013; 32:17–26.
  • Zhu ZH, Ejeckam FE, Qian Y, et al. Wafer bonding technology and its applications in optoelectronic devices and materials. Quantum Electron IEEE J. 1997; 3(3):927–936.
  • Liau ZL, Mull DE. Wafer fusion. A novel technique for optoelectronic device fabrication and monolithic integration. Appl Phys Lett. 1990; 56(8):737–739.
  • Kelly MK, Ambacher O, Dimitrov R, et al. Optical process for liftoff of group III-nitride films. Phys Stat Sol A. 1997;159(1):R3–R4.
  • Dadgar A, Blasing J, Diez A, et al. Metalorganic chemical vapor epitaxy of crack-free GaN on Si (111) exceeding 1 mum in thickness. Jpn J Appl Phys. 2000; 39(Part 2, No. 11B):L1183–L1185.
  • Ikeda N, Niiyama Y, Kambayashi H, et al. GaN power transistors on Si substrates for switching applications. Proc IEEE. 2010; 98(7):1151–1161.
  • Francis D, Faili F, Babić D, et al. Formation and characterization of 4-inch GaN-on-diamond substrates. Diamond Relat Mater. 2010; 19(2-3):229–233.
  • Cuenca JA, Smith MD, Field DE, et al. Thermal stress modelling of diamond on GaN/III-Nitride membranes. Carbon. 2021; 174:647–661.
  • Francis D, Wasserbauer J, Faili F, et al. GaN-HEMT epilayers on diamond substrates: recent progress. In: Proc. CS Mantech., May 14–17; Austin, TX; 2007. p. 133–136.
  • Diduck Q, Felbinger J, Eastman LF, et al. Frequency performance enhancement of AlGaN/GaN HEMTs on diamond. Electron Lett. 2009; 45(14):758–759.
  • Felbinger JG, Chandra S, Sun Y, et al. Comparison of GaN HEMTs on diamond and SiC substrates. IEEE Electron Device Lett. 2007;28(11):948–950.
  • Kim JC, Lee J, Kim J, et al. Challenging endeavor to integrate gallium and carbon via direct bonding to evolve GaN on diamond architecture. Scr Mater. 2018; 142:138–142.
  • He R, Fujino M, Yamauchi A, et al. Combined surface activated bonding technique for low-temperature Cu/dielectric hybrid bonding. ECS J Solid State Sci Technol. 2016; 5:419–424.
  • Wang C, Wang Y, Tian Y, et al. Room-temperature direct bonding of silicon and quartz glass wafer. Appl Phys Lett. 2017; 110(22):221602.
  • Mu FW, He R, Suga T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices. Scr Mater. 2018;150:148–151.
  • Cheng Z, Mu FW, Yates L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl Mater Interfaces. 2020;12(7):8376–8384.
  • Chao PC, Chu K, Creamer C, et al. Low- temperature bonded GaN-on-diamond HEMTs with 11 W/mm output power at 10 GHz. IEEE Trans Electron Devices. 2015; 62(11):3658–3664.
  • Liu T, Kong Y, Wu L, et al. 3-inch GaN-on-Diamond HEMTs with device-first transfer technology. IEEE Electron Device Lett. 2017; 38(10):1417–1420.
  • Oba M, Sugino T. Oriented growth of diamond on (0001) surface of hexagonal GaN. Diamond Relat Mater. 2001;10(3-7):1343–1346.
  • Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a highly quality GaN film using an AlN buffer layer. Appl Phys Lett. 1986;48(5):353–355.
  • Akasaki H, Amano Y, Koide K, Hiramatsu, et al. Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAlxN (0 < x ≦ 0.4) films grown on sapphire substrate by MOVPE. J Cryst Growth. 1989;98:209.
  • Hageman PR, Schermer JJ, Larsen PK. GaN growth on single-crystal diamond substrates by metalorganic chemical vapour deposition and hydride vapour deposition. Thin Solid Films. 2003;443(1-2):9–13.
  • Miskys CR, Garrido JA, Nebel CE, et al. AlN/diamond heterojunction diodes. Appl Phys Lett. 2003; 82(2):290–292.
  • van Dreumel GWG, Tinnemans PT, van den Heuvel AAJ, et al. Realising epitaxial growth of GaN on (001) diamond. J App Phys. 2011;110(1):013503.
  • Dussaigne A, Malinverni M, Martin D, Castiglia A, et al. GaN grown on (111) single crystal diamond substrate by molecular beam epitaxy. J Cryst Growh. 2009;311(21):4539–4542.
  • Pécz B, Tóth L, Barna A, et al. Structural characteristics of single crystalline GaN films grown on (111) diamond with AlN buffer. Diamond Relat Mater. 2013; 34:9–12.
  • Dussaigne A, Gonschorek M, M, Malinverni M, et al. High-Mobility AlGaN/GaN two-dimensional electron gas heterostructure grown on (111) single crystal diamond substrate. Jpn J Appl Phys. 2010;49(6):061001.
  • Alomari M, Dussaigne A, Martin D, et al. AlGaN/GaN HEMT on (111) single crystalline diamond. Electron Lett. 2010; 46(4):299–301.
  • Hirama K, Taniyasu Y, Kasu M. AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic chemical vapor-phase epitaxy. Appl Phys Lett. 2011; 98(16):162112.
  • Hirama K, Taniyasu Y, Kasu M. Heterostructure growth of a single-crystal hexagonal AlN (0001) layer on cubic diamond (111) surface. J Appl Phys. 2010; 108(1):013528.
  • Hirama K, Taniyasu Y, Kasu M, et al. Power operation of AlGaN/GaN HEMTs epitaxially grown on diamond. IEEE Electron Device Lett. 2012; 33(4):513–515.
  • Zhang D, Bian JM, Qin FW, et al. Highly c-axis oriented GaN films grown on free-standing diamond substrates for high-power devices. Mater Res Bull. 2011;46(10):1582–1585.
  • van Dreumel GW G, Buijnsters JG, Bohnen T, et al. Growth of GaN on nano-crystalline diamond substrate. Diamond Relat Mater. 2009;18(5-8):1043–4047.
  • Polyakov A, Markov AV, Duhnovsky MP, et al. GaN epitaxial films grown by hydride vapor phase epitaxy on polycrystalline chemical vapor deposition diamond substrates using surface nanostructuring with TiN or anodic Al oxide. J Vac Sci Technol B. 2010;28(5):1011–1015.
  • van Dreumel GW G, Bohnen T, Buijnsters JG, et al. Comparison of GaN and AlN nucleation layers for the oriented growth of GaN on diamond substrates. Diamond Relat Mater . 2010;19(5-6):437–440.
  • Raju A, Siddique A, Anderson J, et al. Integration of GaN and diamond using epitaxial lateral overgrowth. ACS Appl Mater Interfaces. 2020; 12:39397–39404.
  • Kuzmik J, Bychikhin Pogany D, Pichonat E, et al. Thermal characterization of MBE-grown GaN/AlGaN/GaN device on single crystalline diamond. J App Phys. 2011;109(8):086106.
  • Ahmed R, Siddique A, Anderson J, et al. Selective area deposition of hot filament CVD diamond on 100 Mm MOCVD grown AlGaN/GaN wafers. Cryst Growth Des. 2019;19(2):672–677. 
  • Graebner JE, Jin S, Kammlott GW, et al. Large anisotropic thermal conductivity in synthetic diamond films. Nature. 1992;359(6394):401–403. 
  • May PW, Tsai HY, Wang WV, et al. Deposition of CVD diamond onto GaN. Diamond Relat Mater . 2006;15(4-8):526–530.
  • Bauer T, Gsell S, Hörmann F, et al. Surface modifications and the first stages of heteroepitaxial diamond growth on iridium. Diamond Relat Mater. 2004;13(2):335–341.
  • Goyal V, Sumant AV, Teweldebrhan D, et al. Direct low-temperature integration of nanocrystalline diamond with GaN substrates for improved thermal management of high-power electronics. Adv Funct Mater. 2012;22(7):1525–1530.
  • Oba M, Sugino T. Growth of (111)-oriented diamond grains on hexagonal GaN. Jpn J Appl Phys. 2000; 39(Part 2, No. 12A):L1213–L1215.
  • Ejeckam F, Francis D, Faili F, et al. GaN-on-diamond: a brief history. In: 2014 Lester Eastman Conference on High Performance Devices (LEC).
  • Engdahl C. Development of high quality, tailored CVD diamond using hot filaments. Finer Points Super-Abrasive Ind. Rev. 2012, summer:22–24.
  • Dumka DC, Chou TM, Faili F, et al. AlGaN/GaN HEMTs on diamond substrate with over 7W/mm output power density at 10 GHz. Electron Lett. 2013; 49(20):1298–1299.
  • Wang A, Tadjer MJ, Anderson TJ, et al. Impact of intrinsic stress in diamond capping layers on the electrical behavior of AlGaN/GaN HEMTs. IEEE Trans Electron Devices. 2013; 60(10):3149–3156.
  • Kang BS, Kim S, Kim J, et al. Effect of external strain on the conductivity of AlGaN/GaN high-electron-mobility transistors. Appl Phys Lett. 2003; 83(23):4845–4847.
  • Azize M, Palacios T. Effect of substrate-induced strain in the transport properties of AlGaN/GaN heterostructures. J Appl Phys. 2010; 108(2):023707.
  • Jeon CM, Lee JL. Effects of tensile stress induced by silicon nitride passivation on electrical characteristics of AlGaN/GaN heterostructure field-effect transistors. Appl Phys Lett. 2005; 86(17):172101.
  • Ahmad I, Holtz M, Faleev NN, et al. Dependence of the stress-temperature coefficient on dislocation density in epitaxial GaN grown on a-Al2O3 and 6H-SiC substrates. J Appl Phys. 2004;95(4):1692–1697.
  • Jia X, Wei JJ, Huang YB, et al. Fabrication of low stress GaN-on-diamond structure via dual-sided diamond film deposition. J Mater Sci. 2021;56(11):6903–6911.
  • Zhou Y, Anaya J, Pomeroy J, et al. Barrier-layer optimization for enhanced GaN-on-diamond device cooling. ACS Appl Mater Interfaces. 2017;9(39):34416–34422.,
  • Zhou Y, Ramaneti R, Anaya JL, et al. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs. Appl Phys Lett. 2017;111(4):041901.
  • Smith MD, Cuenca JA, Field DE, et al. GaN-on-diamond technology platform: Bonding-free membrane manufacturing process. AIP Adv. 2020;10(3):035306.
  • Alomari M, Dipalo M, Rossi S, et al. Diamond overgrown InAlN/GaN HEMT. Diamond Relat Mater. 2011;20(4):604–608.
  • Tadjer MJ, Anderson TJ, Hobart KD, et al. Reduced self-heating in AlGaN/GaN HEMTs using nanocrystalline diamond heat-spreading films. IEEE Electron Device Lett. 2012;33(1):23–25.
  • Jia X, Wei JJ, Huang YB, et al. Enhancement of diamond seeding on aluminum nitride dielectric by electrostatic adsorption for GaN-on-diamond preparation. J Mater Res. 2020;35(5):508–515.
  • Smith EJW, Piracha AH, Field D, et al. Mixed-size diamond seeding for low-thermal-barrier growth of CVD diamond onto GaN and AlN. Carbon. 2020; 167:620–626.
  • https://www.fujitsu.com/global/about/resources/news/press-releases/2019/1205-01.html.
  • Cho JW, Li ZJ, Asheghi M, et al. Near-junction thermal management: thermal conduction in gallium nitride composite substrates. Annual Rev Heat Transfer. 2015; 18:7–45.
  • Kuball M, Hayes JM, Uren MJ, Martin I, et al. Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy. IEEE Electron Device Lett. 2002; 23(1):7–9.
  • Sarua A, Ji HF, Hilton KP, et al. Thermal bondary resistance between GaN and substrate in AlGaN/GaN electronic devices. IEEE Trans Electron Devices. 2007; 54(12):3152–3158.
  • Manoi A, Pomeroy JW, Killat N, Kuball M. Benchmarking of thermal boundary resistance in AlGaN/GaN HEMTs on SiC substrates: implications of the nucleation layer microstructure. IEEE Electron Device Lett. 2010; 31(12):1395–1397.
  • Batten T, Pomeroy JW, Uren MJ, et al. Simultaneous measurement of temperature and thermal stress in AlGaN/gan high electron mobility transistors using Raman scattering spectroscopy. J. Appl.Phys. 2009; 106(9):094509.
  • Pomeroy JW, Bernardoni M, Dumka DC, et al. Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping. Appl Phys Lett. 2014; 104(8):083513.
  • Zhang H, Guo ZX, Lu YF. Enhancement of hot spot cooling by capped diamond layer deposition for multifinger AlGaN/GaN HEMTs. IEEE Trans Electron Devices. 2020; 67(1):47–52.
  • Sun HR, Simon RB, Pomeroy JW, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl Phys Lett. 2015; 106(11):111906.
  • May PW. Diamond thin films: a 21st-century material. Phil Trans R Soc A. 2000;358(1766):473–495.
  • Giri A, Braun JL, Hopkins PE. Implications of interfacial bond strength on the spectral contributions to thermal boundary conductance across solid, liquid, and gas interfaces: a molecular dynamics study. J Phys Chem C. 2016;120(43):24847–24856.
  • Waller WM, Pomeroy JW, Field D, et al. Thermal boundary resistance of direct van der waals bonded GaN-on-diamond. Semicond Sci Technol. 2020; 35(9):095021.
  • Cho JW, Li ZJ, Bozorg-Grayeli E, et al. Improved thermal interfaces of GaN-diamond composite substrates for HEMT applications. IEEE Trans Compon Packag Manufact Technol. 2013; 3(1):79–85.
  • Cho J, Francis D, Altman DH, et al. Phonon conduction in GaN-diamond composite substrates. J Appl Phys. 2017;121(5):055105. No.
  • Jia Z, Wei JJ, Kong YC, et al. The influence of dielectric layer on the thermal boundary resistance of GaN-on-diamond substrate. Surf Interface Anal. 2019;51(7):783–790.
  • Dumka D, Chou T, Jimenez J, et al. Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications. In: IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS); 2013. p. 1–4.
  • Cho J, Won Y, Francis D, et al. Thermal interface resistance measurements for GaN-on-diamond composite substrates. In: IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS); 2014. p. 1–4.
  • Field DE, Cuenca JA, Smith M, et al. Crystalline interlayers for reducing the effective thermal boundary resistance in GaN-on-diamond. ACS Appl Mater Interfaces. 2020;12(48):54138–54145.
  • Yates L, Anderson J, Gu X, et al. Low thermal boundary resistance interfaces for GaN-on-Diamond devices. ACS Appl Mater Interfaces. 2018; 10(28):24302–24309.
5538
Favorite
Share

Related articles