Skip to main content

Diamond quantum sensors: from physics to applications on condensed matter research

Kin On Ho ,
Yang Shen ,
Yiu Yung Pang ,
Wai Kuen Leung ,
Nan Zhao ,
Sen Yang
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2021.1964926

Abstract

Single qubit in solid-state materials recently emerges as a versatile platform for quantum information. Among them, the nitrogen vacancy (NV) centre in diamond has become a powerful tool in quantum sensing for detecting various physics parameters, including electric and magnetic fields, temperature, force, strain, with ultimate precision and resolutions. It has been widely used in different conditions, from samples in ambient to samples in ultra-high pressure and low temperature. It can detect quantum phase transitions as well as neuron activities. Here we give a general review on both the physics of the sensing mechanism and protocols and applications.

Keywords

Diamond; quantum sensor; nitrogen vacancy centre; NV sensing; material research; superconductivity

References

  • Kasevich M, Chu S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl Phys B. 1992;54(5):321–332.
  • Kominis I, Kornack T, Allred J, et al. A subfemtotesla multichannel atomic magnetometer. Nature. 2003;422(6932):596–599.
  • Maiwald R, Leibfried D, Britton J, et al. Stylus ion trap for enhanced access and sensing. Nature Phys. 2009;5(8):551–554.
  • Gleyzes S, Kuhr S, Guerlin C, et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature. 2007;446(7133):297–300.
  • Pfender M, Aslam N, Sumiya H, et al. Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters. Nat Commun. 2017;8(1):1.
  • Horsley A, Appel P, Wolters J, et al. Microwave device characterization using a widefield diamond microscope. Phys Rev Appl. 2018;10(4):044039.
  • Davis HC, Ramesh P, Bhatnagar A, et al. Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry. Nat Commun. 2018;9(1):1.
  • Gruber A, Dräbenstedt A, Tietz C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science. 1997;276(5321):2012–2014. https://science.sciencemag.org/content/276/5321/2012.full.pdf.
  • Yip KY, Ho KO, Yu KY, et al. Measuring magnetic field texture in correlated electron systems under extreme conditions. Science. 2019;366(6471):1355–1359. https://science.sciencemag.org/content/366/6471/1355.full.pdf.
  • Dolde F, Fedder H, Doherty MW, et al. Electric-field sensing using single diamond spins. Nature Phys. 2011;7(6):459–463.
  • Barson MSJ, Peddibhotla P, Ovartchaiyapong P, et al. Nanomechanical sensing using spins in diamond. Nano Lett. 2017;17(3):1496–1503. https://doi.org/10.1021/acs.nanolett.6b04544.
  • Neumann P, Jakobi I, Dolde F, et al. High-Precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 2013;13(6):2738–2742.
  • Wang P, Chen S, Guo M, et al. Nanoscale magnetic imaging of ferritins in a single cell. Sci Adv. 2019;5(4):eaau8038. , https://advances.sciencemag.org/content/5/4/eaau8038.full.pdf.
  • Doherty MW, Dolde F, Fedder H, et al. Theory of the ground-state spin of the NV − center in diamond. Phys Rev B. 2012;85(20):205203.
  • Budker D, Romalis M. Optical magnetometry. Nature Phys. 2007;3(4):227–234.
  • Taylor J, Cappellaro P, Childress L, et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 2008;4(10):810–816.
  • Wolf T, Neumann P, Nakamura K, et al. Subpicotesla diamond magnetometry. Phys Rev X. 2015;5(4):041001.
  • Barry JF, Schloss JM, Bauch E, et al. Sensitivity optimization for NV-diamond magnetometry. Rev Mod Phys. 2020;92(1):015004.
  • Shi F, Zhang Q, Wang P, et al. Single-protein spin resonance spectroscopy under ambient conditions. Science. 2015;347(6226):1135–1138.
  • Van der Sar T, Casola F, Walsworth R, et al. Erratum: Nanometre-scale probing of spin waves using single electron spins. Nat Commun. 2015;6(1):1.
  • Andrich P, Charles F, Liu X, et al. Long-range spin wave mediated control of defect qubits in nanodiamonds. Npj Quantum Inf. 2017;3(1):1.
  • Viola L, Knill E, Lloyd S. Dynamical decoupling of open quantum systems. Phys Rev Lett. 1999;82(12):2417–2421.
  • Yang W, Wang Z-Y, Liu R-B. Preserving qubit coherence by dynamical decoupling. Frontiers of Physics in China. 2011;6:2.
  • Hahn EL. Spin echoes. Phys Rev. 1950;80(4):580–594.
  • Childress L, Dutt MG, Taylor J, et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science. 2006;314(5797):281–285.
  • Schweiger A, Jeschke G. Principles of pulse electron paramagnetic resonance. UK: Oxford University Press on Demand, 2001.
  • Naydenov B, Dolde F, Hall LT, et al. Dynamical decoupling of a single-electron spin at room temperature. Phys Rev B. 2011;83(8):081201.
  • Souza AM, Álvarez GA, Suter D. Robust dynamical decoupling for quantum computing and quantum memory. Phys Rev Lett. 2011;106(24):240501.
  • Zhao N, Hu J-L, Ho S-W, et al. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond. Nature Nanotech. 2011;6(4):242–246.
  • Zhao N, Honert J, Schmid B, et al. Sensing single remote nuclear spins. Nature Nanotech. 2012;7(10):657–662.
  • Zhao N, Ho S-W, Liu R-B. Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths. Phys Rev B. 2012;85(11):115303.
  • Steinert S, Ziem F, Hall L, et al. Magnetic spin imaging under ambient conditions with Sub-cellular resolution. Nat Commun. 2013;4(1):1607.
  • Tetienne J-P, Hingant T, Rondin L, et al. Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing. Phys Rev B. 2013;87(23):235436.
  • Staudacher T, Shi F, Pezzagna S, et al. Nuclear magnetic resonance spectroscopy on a (5-Nanometer) 3 sample volume. Science. 2013;339(6119):561–563.
  • Gaebel T, Domhan M, Popa I, et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2006;2(6):408–413.
  • Kotler S, Akerman N, Glickman Y, et al. Single-ion quantum lock-in amplifier. Nature. 2011;473(7345):61–65.
  • Cooper A, Magesan E, Yum H, et al. Time-resolved magnetic sensing with electronic spins in diamond. Nat Commun. 2014;5(1):1.
  • Laraoui A, Dolde F, Burk C, et al. High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond. Nat Commun. 2013;4(1):1651.
  • Acosta VM, Bauch E, Ledbetter MP, et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys Rev B. 2009;80(11):115202.
  • Balasubramanian G, Chan IY, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature. 2008;455(7213):648–651.
  • Maze JR, Stanwix PL, Hodges JS, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature. 2008;455(7213):644–647.
  • Mittiga T, Hsieh S, Zu C, et al. Imaging the local charge environment of Nitrogen-Vacancy centers in diamond. Phys Rev Lett. 2018;121(24):246402.
  • Acosta VM, Bauch E, Ledbetter MP, et al. Temperature dependence of the Nitrogen-Vacancy magnetic resonance in diamond. Phys Rev Lett. 2010;104(7):070801.
  • Chen X-D, Dong C-H, Sun F-W, et al. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond. Appl Phys Lett. 2011;99(16):161903. doi: https://doi.org/10.1063/1.3652910
  • Doherty MW, Acosta VM, Jarmola A, et al. Temperature shifts of the resonances of the NV − center in diamond. Phys Rev B. 2014;90(4):041201.
  • Broadway DA, Johnson BC, Barson MSJ, et al. Microscopic imaging of the stress tensor in diamond using in situ quantum sensors. Nano Lett. 2019;19(7):4543–4550. https://doi.org/10.1021/acs.nanolett.9b01402.
  • Barfuss A, Kasperczyk M, Kölbl J, et al. Spin-stress and spin-strain coupling in diamond-based hybrid spin oscillator systems. Phys Rev B. 2019;99(17):174102.
  • Hsieh S, Bhattacharyya P, Zu C, et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science. 2019;366(6471):1349–1354. https://science.sciencemag.org/content/366/6471/1349.full.pdf.
  • Ho KO, Leung MY, Pang YY, et al. InSitu studies of stress environment in amorphous solids using negatively charged nitrogen vacancy (NV – ) centers in nanodiamond. ACS Appl Polym Mater. 2021;3(1):162–170. https://doi.org/10.1021/acsapm.0c00964.
  • Ho KO, Leung MY, Jiang Y, et al. Probing local pressure environment in anvil cells with Nitrogen-Vacancy (N- V−) centers in diamond. Phys Rev Appl. 2020;13(2):024041.
  • Doherty MW, Struzhkin VV, Simpson DA, et al. Electronic properties and metrology applications of the diamond NV − center under pressure. Phys Rev Lett. 2014;112(4):047601.
  • Steele LG, Lawson M, Onyszczak M, et al. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. Appl Phys Lett. 2017;111(22):221903. https://doi.org/10.1063/1.5004153.
  • Ivády V, Simon T, Maze JR, et al. Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: a first-principles study. Phys Rev B. 2014;90(23):235205.
  • Lesik M, Plisson T, Toraille L, et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science. 2019;366(6471):1359–1362. https://science.sciencemag.org/content/366/6471/1359.full.pdf.
  • Bertelli I, Carmiggelt JJ, Yu T, et al. Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator. Sci Adv. 2020;6(46):eabd3556. , https://advances.sciencemag.org/content/6/46/eabd3556.full.pdf.
  • Lee-Wong E, Xue R, Ye F, et al. Nanoscale detection of magnon excitations with variable wavevectors through a quantum spin sensor. Nano Lett. 2020;20(5):3284–3290. https://doi.org/10.1021/acs.nanolett.0c00085.
  • Dubs C, Surzhenko O, Linke R, et al. Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses. J Phys D: Appl Phys. 2017; 50(20):204005.
  • Zhou BB, Jerger PC, Lee K-H, et al. Spatiotemporal mapping of a photocurrent vortex in monolayer MoS2 using diamond quantum sensors. Phys Rev X. 2020;10(1):011003.
  • Xia K, Liu C-F, Leong W-H, et al. Nanometer-precision non-local deformation reconstruction using nanodiamond sensing. Nat Commun. 2019;10(1):3259.
  • Fujiwara M, Shikano Y, Tsukahara R, et al. Observation of the linewidth broadening of single spins in diamond nanoparticles in aqueous fluid and its relation to the rotational brownian motion. Sci Rep. 2018;8(1):14773.
  • Bouchard L-S, Acosta VM, Bauch E, et al. Detection of the meissner effect with a diamond magnetometer. New J Phys. 2011;13(2):025017.
  • Lim H-J, Byrne JG. Improvement of properties of BSCCO superconductor tapes with thermal processing. Metall and Materi Trans B. 1997;28(3):425–428.
  • Nusran NM, Joshi KR, Cho K, et al. Spatially-resolved study of the meissner effect in superconductors using NV-centers-in-diamond optical magnetometry. New J Phys. 2018;20(4):043010.
  • Joshi K, Nusran N, Tanatar M, et al. Measuring the lower critical field of superconductors using Nitrogen-Vacancy centers in diamond optical magnetometry. Phys Rev Appl. 2019;11(1):014035.
  • Xu Y, Yu Y, Hui YY, et al. Mapping dynamical magnetic responses of ultrathin Micron-Size superconducting films using Nitrogen-Vacancy centers in diamond. Nano Lett. 2019;19(8):5697–5702. https://doi.org/10.1021/acs.nanolett.9b02298.
  • Thiel L, Rohner D, Ganzhorn M, et al. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer. Nature Nanotech. 2016;11(8):677–681.
  • Schlussel Y, Lenz T, Rohner D, et al. Wide-Field imaging of superconductor vortices with electron spins in diamond. Phys Rev Appl. 2018;10(3):034032.
  • Auslaender OM, Luan L, Straver EWJ, et al. Mechanics of individual isolated vortices in a cuprate superconductor. Nature Phys. 2009;5(1):35–39.
  • Wölbing R, Schwarz T, Müller B, et al. Optimizing the spin sensitivity of grain boundary junction nanoSQUIDs—towards detection of small spin systems with single-spin resolution. Supercond Sci Technol. 2014;27(12):125007.
  • Klintberg LE, K. Goh S, Kasahara S, et al. Chemical pressure and physical pressure in BaFe 2 (as 1- x P x ) 2. J Phys Soc Jpn. 2010;79(12):123706. https://doi.org/10.1143/JPSJ.79.123706.
  • Yip KY, Chan YC, Niu Q, et al. Weakening of the diamagnetic shielding in FeSe1 − xSx at high pressures. Phys Rev B. 2017;96(2):020502.
  • Alireza PL, Julian SR. Susceptibility measurements at high pressures using a microcoil system in an anvil cell. Rev Sci Instrum . 2003;74(11):4728–4731. https://doi.org/10.1063/1.1614861.
  • Buzea C, Yamashita T. Review of the superconducting properties of MgB 2. Supercond Sci Technol. 2001;14(11):R115–R146.
  • Pfender M, Wang P, Sumiya H, et al. High-resolution spectroscopy of single nuclear spins via sequential weak measurements. Nat Commun. 2019;10(1):594.
  • Cujia KS, Boss JM, Herb K, et al. Tracking the precession of single nuclear spins by weak measurements. Nature. 2019;571(7764):230–233.
  • Irber DM, Poggiali F, Kong F, et al. Robust all-optical single-shot readout of nitrogen-vacancy centers in diamond. Nat Commun. 2021;12(1):532.
  • Zhang Q, Guo Y, Ji W, et al. High-fidelity single-shot readout of single electron spin in diamond with spin-to-charge conversion. Nat Commun. 2021; 12(1):1529.
  • Wang P, Chen C, Liu R-B. Classical-Noise-Free sensing based on quantum correlation measurement*. Chinese Phys Lett. 2021;38(1):010301.
  • Fescenko I, Jarmola A, Savukov I, et al. Diamond magnetometer enhanced by ferrite flux concentrators. Phys Rev Research. 2020;2(2):023394.
  • Xie Y, Yu H, Zhu Y, et al. A hybrid magnetometer towards femtotesla sensitivity under ambient conditions. Science Bulletin. 2021;66(2):127–132.
  • Bian K, Zheng W, Zeng X, et al. Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nat Commun. 2021;12(1):2457.
  • Rong X, Wang M, Geng J, et al. Searching for an exotic spin-dependent interaction with a single electron-spin quantum sensor. Nat Commun. 2018;9(1):739.
4874
Favorite
Share

Related articles