Skip to main content

Progress of structural and electronic properties of diamond: a mini review

Hongchao Yang ,
Yandong Ma ,
Ying Dai
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2021.1956287

Abstract

Diamond is of great importance for scientific and practical applications. It is the hardest natural material and holds potential applications in mechanics, electronics and photonics. Over the past few decades, great efforts have been paid for exploring its nature both experimentally and theoretically. Most of the recent studies on diamond are focused on their geometry stability and structural properties, while the research on electronic properties is relatively limited. Here, the recent research advances on diamond from a theoretical perspective are presented. In this mini review, we emphasize the recent breakthroughs related to the geometric and electronic properties of diamond, as well as the promising strategies for tuning their electronic properties, such as doping and constructing heterostructure. We then discuss its potential applications in electronic and optoelectronic devices. Finally, the challenges and opportunities in this field are also provided.

Keywords

Diamond; semiconductor; electronic; magnetic; impurities

References

  • Yue Y, Gao Y, Hu W, et al. Hierarchically structured diamond composite with exceptional toughness. Nature. 2020;582(7812):370–374.
  • Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature. 2014;510(7504):250–253.
  • Ekimov EA, Sidorov VA, Bauer ED, et al. Superconductivity in diamond. Nature. 2004;428(6982):542–545.
  • Liu C, Song X, Li Q, et al. Superconductivity in compression-shear deformed diamond. Phys Rev Lett. 2020;124(14):147001.
  • Dubrovinskaia N, Wirth R, Wosnitza J, et al. An insight into what superconducts in polycrystalline boron-doped diamonds based on investigations of microstructure. Proc Natl Acad Sci. 2008;105(33):11619–11622.
  • Dubrovinskaia N, Eska G, Sheshin GA, et al. Superconductivity in polycrystalline boron-doped diamond synthesized at 20GPa and 2700K. J Appl Phys. 2006;99(3):033903.
  • Pelskov YV, Sakharova AY, Krotova MD, et al. Photoelectrochemical properties of semiconductor diamond. J Electroanal Chem Interf Electrochem. 1987;228(1-2):19–27.
  • Hausmann BJM, Bulu I, Venkataraman V, et al. Diamond nonlinear photonics. Nature Photon. 2014;8(5):369–374.
  • Roundy D, Cohen ML. Ideal strength of diamond, Si, and Ge. Phys Rev B. 2001;64(21):212103.
  • van der Weide J, Zhang Z, Baumann PK, et al. Negative-electron-affinity effects on the diamond (100) surface. Phys Rev B. 1994;50(8):5803–5806.
  • Banerjee A, Bernoulli D, Zhang H, et al. Ultralarge elastic deformation of nanoscale diamond. Science. 2018;360(6386):300–302.
  • Shirafuji J, Sugino T. Electrical properties of diamond surfaces. Diam Relat Mater. 1996;5(6-8):706–713.
  • Prawer S, Nemanich RJ. Raman spectroscopy of diamond and doped diamond. Phil Trans R Soc. 2004;362(1824):2537–2565.
  • Lee K-W, Pickett WE. Superconductivity in Boron-Doped Diamond. Phys Rev Lett. 2004;93(23):237003.
  • Dean PJ, Lightowlers EC, Wight DR. Intrinsic and extrinsic recombination radiation from natural and synthetic aluminum-doped diamond. Phys Rev. 1965;140(1A):A352–A368.
  • Klein T, Achatz P, Kacmarcik J, et al. Metal-insulator transition and superconductivity in boron-doped diamond. Phys Rev B. 2007;75(16):165313.
  • Mort J, Machonkin MA, Okumura K. Compensation effects in nitrogen-doped diamond thin films. Appl Phys Lett. 1991;59(24):3148–3150.
  • Zvanut ME, Carlos WE, Freitas JA, et al. Identification of phosphorus in diamond thin films using electron paramagnetic-resonance spectroscopy. Appl Phys Lett. 1994;65(18):2287–2289.
  • Wu D, Ma Y, Wang Z, et al. Optical properties of boron-doped diamond. Phys Rev B. 2006;73(1):012501.
  • Denisenko A, Aleksov A, Kohn E. pH sensing by surface-doped diamond and effect of the diamond surface termination. Diam Relat Mater. 2001;10(3–7):667–672.
  • Pinault MA, Barjon J, Kociniewski T, et al. The n-type doping of diamond: Present status and pending questions. Physica B. 2007;401-402:51–56.
  • Kalish RJ. Doping of diamond. Carbon. 1999;37(5):781–785.
  • Koizumi S, Teraji T, Kanda H. Phosphorus-doped chemical vapor deposition of diamond. Diam Relat Mater. 2000;9(3-6):935–940.
  • Saada D, Adler J, Kalish R. Sulfur: A potential donor in diamond. Appl Phys Lett. 2000;77(6):878–879.
  • Goss JP, Briddon PR. Theoretical study of Li and Na as n-type dopants for diamond. Phys Rev B. 2007;75(7):2978.
  • Schwingenschlogl U, Chroneos A, Schuster C, et al. Doping and cluster formation in diamond. J Appl Phys. 2011;110(5): 0561071.
  • Shah ZM, Mainwood A. A theoretical study of the effect of nitrogen, boron and phosphorus impurities on the growth and morphology of diamond surfaces. Diam Relat Mater. 2008;17(7-10):1307–1310.
  • Koizumi S, Kamo M, Sato Y, et al. Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. Appl Phys Lett. 1997;71(8):1065–1067.
  • Kato H, Yamasaki S, Okushi H. n-type doping of (001)-oriented single-crystalline diamond by phosphorus. Appl Phys Lett. 2005;86(22):222111.
  • Prins JF. n-type semiconducting diamond by means of oxygen-ion implantation. Phys Rev B. 2000;61(11):7191–7194.
  • Sakaguchi I, Gamo MN, Kikuchi Y, et al. Sulfur: A donor dopant for n-type diamond semiconductors. Phys Rev B. 1999;60(4):R2139–R2141.
  • Hasegawa M, Takeuchi D, Yamanaka S, et al. n-Type control by sulfur ion implantation in homoepitaxial diamond films grown by chemical vapor deposition. Jpn J Appl Phys. 1999;38(Part 2, No. 12B):L1519–L1522.
  • Miyazaki T, Okushi H, Uda T. Shallow Donor State Due to Nitrogen-Hydrogen Complex in Diamond. Phys Rev Lett. 2002;88(6):066402.
  • Lombardi EB, Mainwood A, Osuch K. Interaction of hydrogen with boron, phosphorus, and sulfur in diamond. Phys Rev B. 2004;70(20):205201.
  • Li R, Hu X, Shen H, et al. Co-doping of diamond with boron and sulfur. J. Mater. Sci. 2004;39:1135.
  • Tang L, Yue R, Wang Y. N-type B-S co-doping and S doping in diamond from first principles. Carbon. 2018;130:458–465.
  • Li Z, Li Y, Wang Y, et al. Synergistic effect in B and N co-doped Ib-type diamond single crystal: A density function theory calculation. Can J Phys. 2016;94:929.
  • Ma Y, Dai Y, Guo M, et al. Graphene-diamond interface: gap opening and electronic spin injection. Phys Rev B. 2012;85(23):235448.
  • Wu K, Liao M, Sang L, et al. A density functional study of the effect of hydrogen on electronic properties and band discontinuity at anatase TiO2/diamond interface. J Appl Phys. 2018;123(16):161599.
  • Zhao D, Gao W, Li Y, et al. The electronic properties and band-gap discontinuities at the cubic boron nitride/diamond hetero-interface. RSC Adv. 2019;9(15):8435–8443.
  • Shen S, Shen W, Liu S, et al. First-principles calculations of co-doping impurities in diamond. Mater Today Commun. 2020;23:100847.
  • Kajihara SA, Antonelli A, Bernholc J, et al. Nitrogen and potential n -type dopants in diamond. Phys Rev Lett. 1991;66(15):2010–2013.
  • Briddon PR, Heggie MI, Jones RJ. Theory of nitrogen and platelets in diamond. MSF. 1992;83-87:457–462.
  • Bhattacharyya S, Auciello O, Birrell J, et al. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl Phys Lett. 2001;79(10):1441–1443.
  • Oliver AW, Stephane C, Jennifer EG, et al. n-type conductivity in ultrananocrystalline diamond films. Appl Phys Lett. 2004;85:1680.
  • Achatz P, Williams OA, Bruno P, et al. Effect of nitrogen on the electronic properties of ultrananocrystalline diamond thin films grown on quartz and diamond substrates. Phys Rev B. 2006;74(15):155429.
  • Birrell J, Carlisle JA, Auciello O, et al. Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond. Appl Phys Lett. 2002;81(12):2235–2237.
  • Zapol P, Sternberg M, Curtiss LA, et al. Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Phys Rev B. 2001;65(4):045403.
  • Teukam Z, Chevallier J, Saguy C, et al. Shallow donors with high n-type electrical conductivity in homoepitaxial deuterated boron-doped diamond layers. Nature Mater. 2003;2(7):482–486.
  • Song Y, Larsson K. A theoretical study of the effect of dopants on diamond (100) surface stabilization for different termination scenarios. J Phys Chem C. 2015;119:2545.
  • Katagiri M, Isoya J, Koizumi S, et al. Lightly phosphorus-doped homoepitaxial diamond films grown by chemical vapor deposition. Appl Phys Lett. 2004;85(26):6365–6367.
  • Kato H, Futako W, Yamasaki S, et al. Homoepitaxial growth and characterization of phosphorus-doped diamond using tertiarybutylphosphine as a doping source. Diam. Relat. Mater. 2004;13(11-12):2117–2120.
  • Nesládek M, Haenen KJ. Optical properties of CVD diamond. Semicond Semimetals. 2003;76:325.
  • Tajani A, Mermoux M, Marcus B, et al. Strains and cracks in undoped and phosphorus-doped{111} homoepitaxial diamond films. Phys Stat Sol (a)). 2003;199(1):87–91.
  • Koizumi S. Growth and characterization of phosphorus doped n-type diamond thin films. Phys Stat Sol (a)). 1999;172(1):71–78.
  • Teraji T, Koizumi S, Kanda H. Ohmic contacts for phosphorus-doped n-type diamond. Phys Stat Sol (a)). 2000;181(1):129–139.
  • Okano K, Kiyota H, Iwasaki T, et al. Synthesis of n-type semiconducting diamond film using diphosphorus pentaoxide as the doping source. Appl Phys A. 1990;51(4):344–346.
  • Kociniewski T, Barjon J, Pinault MA, et al. n-type CVD diamond doped with phosphorus using the MOCVD technology for dopant incorporation. Phys Stat Sol (a)). 2006;203(12):3136–3141.
  • Wang LG, Zunger AJ. Phosphorus and sulphur doping of diamond. Phys Rev B. 2002;66(16):161202.
  • Ullah M, Ahmed E, Hussain F, et al. Electronic structure calculations of oxygen-doped diamond using DFT technique. Microelectron. Eng. 2015;146:26–31.
  • Miyazaki T. Theoretical studies of sulfur and sulfur-hydrogen complexes in diamond. Phys Stat Sol (a)). 2002;193(3):395–408.
  • Prins JFJ. The nature of radiation damage in diamond: activation of oxygen donors. Diam Relat Mater. 2000;9(3-6):1275–1281.
  • Prins JFJ. Implantation-doping of diamond with B+, C+, N + and O + ions using low temperature annealing. Diam Relat Mater. 2002;11(3-6):612–617.
  • Hu X, Ye J, Zheng G, et al. The influences of oxygen ion implantation on the electrical and structural properties of diamond films. J Chin Phys. 2006;15:2170.
  • Anderson AB, Grantscharova EJ, Angus JCJ. Molecular-orbital theory of monatomic and diatomic substitutional defects as shallow n-type dopants in diamond. Phys Rev B. 1996;54(20):14341–14348.
  • Gali A, Lowther JE, Deak PJ. Defect states of substitutional oxygen in diamond. J Phys: Condens Matter. 2001;13(50):11607–11613.
  • Nishitani-Gamo M, Yasu E, Xiao C, et al. Sulfur-doped homoepitaxial (001) diamond with n-type semiconductive properties. Diam. Relat. Mater. 2000;9(3-6):941–947.
  • Garrido JA, Nebel CE, Stutzmann M, et al. Electrical and optical measurements of CVD diamond doped with sulfur. Phys Rev B. 2002;65(16):165409.
  • Tan X, Chen L, Liu X, et al. First‐principles studies of Ti‐related defects in diamond. Phys Status Solidi B. 2020;257(1):1900292.
  • Yan C, Dai Y, Huang B. DFT study of halogen impurity in diamond. J Phys D: Appl Phys. 2009;42(14):145407.
  • Sun X, Guo Y, Wu G, et al. Research of n-type arsenic doped diamond: Theoretical analysis of electronic and mechanical properties. Diam Relat Mater. 2020;108:107924.
  • Yan C, Dai Y, Huang B, et al. Shallow donors in diamond: Be and Mg. Comput Mater Sci. 2009;44(4):1286–1290.
  • Wei S, Zhang S. Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe. Phys Rev B. 2002;66(15):155211.
  • Issaoui R, Tallaire A, Mrad A, et al. Defect and threading dislocations in single crystal diamond: a focus on boron and nitrogen codoping. Phys Status Solidi A. 2019;216(21):1900581.
  • Li Y, Jia X, Ma H, et al. Electrical properties of diamond single crystals co-doped with hydrogen and boron. CrystEngComm. 2014;16(32):7547.
  • Gruber A, Dräbenstedt A, Tietz C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science. 1997;276(5321):2012–2014.
  • Ma Y, Rohlfing M, Gali A. Excited states of the negatively charged nitrogen-vacancy color center in diamond. Phys Rev B. 2010;81(4):041204.
  • Beveratos A, Brouri R, Gacoin T, et al. Single photon quantum cryptography. Phys Rev Lett. 2002;89(18):187901.
  • Devitt SJ, Greentree AD, Ionicioiu R, et al. Photonic module: An on-demand resource for photonic entanglement. Phys Rev A. 2007;76(5):052312.
  • Greentree AD, Fairchild BA, Hossain FM, et al. Diamond integrated quantum photonics. Mater. Today. 2008;11(9):22–31.
  • Jacques V, Wu E, Grosshans F, et al. Experimental realization of wheeler’s delayed-choice gedanken experiment. Science. 2007;315(5814):966–968.
  • Wang C, Kurtsiefer C, Weinfurter H, et al. Single photon emission from SiV centres in diamond produced by ion implantation. J Phys B: At Mol Opt Phys. 2006;39(1):37–41.
  • Iwasaki T, Miyamoto Y, Taniguchi T, et al. Tin-vacancy quantum emitters in diamond. Phys Rev Lett. 2017;119(25):253601.
  • Tchernij SD, Herzig T, Forneris J, et al. Single-photon-emitting optical centers in diamond fabricated upon sn implantation. ACS Photonics. 2017;4(10):2580–2586.
  • Siampour H, Kumar S, Davydov VA, et al. On-chip excitation of single germanium vacancies in nanodiamonds embedded in plasmonic waveguides. Light Sci Appl. 2018;7:61.
  • Thiering G, Gali A. Ab Initio Magneto-Optical Spectrum of Group-IV Vacancy Color Centers in Diamond. Phys Rev B. 2018;8:021063.
  • Hepp C, Müller T, Waselowski V, et al. Electronic structure of the silicon vacancy color center in diamond. Phys Rev Lett. 2014;112(3):036405.
  • Flatae AM, Lagomarsino S, Sledz F, et al. Silicon-vacancy color centers in phosphorus-doped diamond. Diam Relat Mater. 2020;105:107797.
  • Iwasaki T, Ishibashi F, Miyamoto Y, et al. Germanium-vacancy single color centers in diamond. Sci Rep. 2015;5:12882.
  • Chen D, Mu Z, Zhou Y, et al. Optical gating of resonance fluorescence from a single germanium vacancy color center in diamond. Phys Rev Lett. 2019;123(3):033602.
  • Gaebel T, Popa I, Gruber A, et al. Stable single-photon source in the near infrared. New J Phys. 2004;6:98–98.
  • Czelej K, Ćwieka K, Śpiewak P, et al. Titanium-related color centers in diamond: a density functional theory prediction. J Mater Chem C. 2018;6(19):5261–5268.
3703
Favorite
Share

Related articles