Skip to main content

Diamane: design, synthesis, properties, and challenges

Guowen Qin ,
Lailei Wu ,
Huiyang Gou
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2020.1869475


Diamane, the two-dimensional counterpart of diamond, is achieved from bi-layer graphene (BLG) or few-layer graphene (FLG) through surface chemical adsorption or high-pressure technology. Diamane with interlayer sp3 bonding is found to have excellent heat transfer, ultra-low friction, high natural frequency, and tunable band gap, which shows the potential technological and industrial applications in nano-photonics, ultrasensitive resonator-based sensors, and improved wear resistance. In this review, we summarize the structure character, synthesis strategies, and physical properties of different diamanes, including hydrogenated diamane (HD), fluorinated diamane (FD), and pristine diamane (PD). In addition, we discuss the effect of functional groups, element doping, and stacking order on the physical properties of diamane. Finally, the remaining challenges and future opportunities for the further development of diamane are addressed.


Two dimensional diamond; Varied stacking and electronic strcture; Diamane with different functional group; Chemicaland physical properties


  • Liu L, Zhou H, Cheng R, et al. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. ACS Nano. 2012; 6(9): 8241–8249.
  • Xu Y, Li X, Dong J. Infrared and Raman spectra of AA-stacking bilayer graphene. Nanotechnology. 2010; 21(6): 065711.
  • Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature. 2018; 556(7699): 43–50.
  • Elias DC, Nair RR, Mohiuddin TMG, et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science. 2009; 323(5914): 610–613.
  • Sofo JO, Chaudhari AS, Barber GD, et al. Graphane: a two-dimensional hydrocarbon. Phys Rev B. 2007; 75(15): 153401.
  • Clark SM, Jeon K, Chen J, et al. Few-layer graphene under high pressure: Raman and X-ray diffraction studies. Solid State Commun. 2013; 154: 15–18.
  • Robinson JT, Burgess JS, Junkermeier CE, et al. Properties of fluorinated graphene films. Nano Lett. 2010; 10(8): 3001–3005.
  • Zbořil R, Karlický F, Bourlinos AB, et al. Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small. 2010; 6(24): 2885–2891.
  • Mathkar A, Tozier D, Cox P, et al. Controlled, stepwise reduction and band gap manipulation of graphene oxide. J Phys Chem Lett. 2012; 3(8): 986–991.
  • Angus JC, Hayman CC. Low-pressure, metastable growth of diamond and “diamondlike” phases. Science. 1988;241(4868):913–921.
  • Bachmann PK, Leers D, Lydtin H. Towards a general concept of diamond chemical vapour deposition. Diamond Relat Mater. 1991; 1(1): 1–12.
  • Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in single-crystal plasma-deposited diamond. Science. 2002; 297(5587): 1670–1672.
  • Butler JE, Sumant AV. The CVD of nanodiamond materials. Chem Vap Deposition. 2008; 14(7–8): 145–160.
  • Khaliullin RZ, Eshet H, Kühne TD, et al. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nature Mater. 2011;10(9):693–697.
  • Boukhvalov DW, Katsnelson MI. Chemical functionalization of graphene with defects. Nano Lett. 2008; 8(12): 4373–4379.
  • Lambrecht WR, Lee CH, Segall B, et al. Diamond nucleation by hydrogenation of the edges graphitic precursors. Nature (London). 1993; 364(6438): 607–610.
  • Suarez-Martinez I, Savini G, Haffenden G, et al. Dislocations of Burgers vector c/2 in graphite. Phys Stat Sol (c). 2007; 4(8):2958–2962.
  • Diankov G, Neumann M, Goldhaber-Gordon D. Extreme monolayer-selectivity of hydrogen-plasma reactions with graphene. ACS Nano. 2013; 7(2): 1324–1332.
  • Balog R, Jørgensen B, Nilsson L, et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Mater. 2010; 9(4): 315–319.
  • Chernozatonskii LA, Sorokin PB, Kvashnin AG, et al. Diamond-like C2H nanolayer, diamane: simulation of the structure and properties. Jetp Lett. 2009; 90(2): 134–138.
  • Paul S, Momeni K. Mechanochemistry of stable diamane and atomically thin diamond films synthesis from bi- and multilayer graphene: a computational study. J Phys Chem C. 2019; 123(25): 15751–15760.
  • Muniz1 AR, Maroudas D. Opening and tuning of band gap by the formation of diamond superlattices in twisted bilayer graphene. Phys Rev B. 2012; 86(7): 75404.
  • Zheng Z, Zhan H, Nie Y, et al. Single layer diamond - a new ultrathin 2D carbon nanostructure for mechanical resonator. Carbon. 2020; 161: 809–815.
  • Bakharev PV, Huang M, Saxena M, et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat Nanotechnol. 2020; 15(1): 59–66.
  • Ke F, Zhang L, Chen Y, et al. Synthesis of atomically thin hexagonal diamond with compression. Nano Lett. 2020; 20(8): 5916–5921.
  • Chernozatonskii LA, Sorokin PB, Kuzubov AA, et al. Influence of size effect on the electronic and elastic properties of diamond films with nanometer thickness. J Phys Chem C. 2011; 115(1): 132–136.
  • Nair RR, Ren W, Jalil R, et al. Fluorographene: a two-dimensional counterpart of teflon. Small. 2010; 6(24): 2877–2884.
  • Martins LGP, Matos MJS, Paschoal AR, et al. Raman evidence for pressure-induced formation of diamondene. Nature Commun. 2017; 88(1): 96.
  • Gao Y, Cao T, Cellini F, et al. Ultrahard carbon film from epitaxial two-layer graphene. Nature Nanotech. 2018; 13(2): 133–138.
  • Boukhvalov DW, Katsnelson MI, Lichtenstein AI. Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys Rev B. 2008; 77(3): 35427.
  • Odkhuu D, Shin D, Ruoff RS, et al. Conversion of multilayer graphene into continuous ultrathin sp3-bonded carbon films on metal surfaces. Sci Rep. 2013; 3(1): 3276.
  • Zhu L, Hu H, Chen Q, et al. Formation and electronic properties of hydrogenated few layer graphene. Nanotechnology. 2011; 22(18): 185202.
  • Landt L, Klunder K, Dahl JE, et al. Optical response of diamond nanocrystals as a function of particle size, shape, and symmetry. Phys Rev Lett. 2009; 103(4): 47402.
  • Dahl JE, Liu SG, Carlson RMK. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science. 2003; 299(5603): 96–99.
  • Li L, Zhao X. Transformation between different hybridized bonding structures in two-dimensional diamond-based materials. J Phys Chem C. 2011; 115(45): 22168–22179.
  • Grayfer ED, Makotchenko VG, Kibis LS, et al. Synthesis, properties, and dispersion of few-layer graphene fluoride. Chem Asian J. 2013; 8(9): 2015–2022.
  • Artyukhov VI, Chernozatonskii LA. Structure and layer interaction in carbon monofluoride and graphane: a comparative computational study. J Phys Chem A. 2010; 114(16): 5389–5396.
  • Flores MZ, Autreto PA, Legoas SB, et al. Graphene to graphane: a theoretical study. Nanotechnology. 2009; 20(46): 465704.
  • Bhattacharya A, Bhattacharya S, Majumder C, et al. Third conformer of graphane: a first-principles density functional theory study. Phys Rev B. 2011; 83(3): 033404.
  • Leenaerts O, Peelaers H, Hernández-Nieves AD, et al. First-principles investigation of graphene fluoride and graphane. Phys Rev B. 2010; 82(19): 195436.
  • Antipina LY, Sorokin PB. Converting chemically functionalized few-layer graphene to diamond films: a computational study. J Phys Chem C. 2015; 119(5): 2828–2836.
  • Kvashnin AG, Chernozatonskii LA, Yakobson BI, et al. Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. Nano Lett. 2014; 14(2): 676–681.
  • Rajasekaran S, Abild-Pedersen F, Ogasawara H, et al. Interlayer carbon bond formation induced by hydrogen adsorption in few-layer supported graphene. Phys Rev Lett. 2013; 111(8): 85503.
  • Luo Z, Yu T, Shang J, et al. Large-scale synthesis of bi-layer graphene in strongly coupled stacking order. Adv Funct Mater. 2011; 21(5): 911–917.
  • Shang N, Papakonstantinou P, Wang P, et al. Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. ACS Nano. 2009; 3(4): 1032–1038.
  • Luo Z, Yu T, Kim K, et al. Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano. 2009; 3(7): 1781–1788.
  • Barboza APM, Guimaraes MHD, Massote DVP, et al. Room-temperature compression-induced diamondization of few-layer graphene. Adv Mater. 2011; 23(27): 3014–3017.
  • Piazza F, Gough K, Monthioux M, et al. Low temperature, pressureless sp2 to sp3 transformation of ultrathin, crystalline carbon films. Carbon. 2019; 145: 10–22.
  • Rajasekaran S, Kaya S, Abild-Pedersen F, et al. Reversible graphene-metal contact through hydrogenation. Phys Rev B. 2012; 86(7): 075417.
  • Jeon K, Lee Z, Pollak E, et al. Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. ACS Nano. 2011; 5(2): 1042–1046.
  • Smith D, Howie RT, Crowe IF, et al. Hydrogenation of graphene by reaction at high pressure and high temperature. ACS Nano. 2015; 9(8): 8279–8283.
  • Withers F, Dubois M, Savchenko AK. Electron properties of fluorinated single-layer graphene transistors. Phys Rev B. 2010; 82(7): 073403.
  • Chang H, Cheng J, Liu X, et al. Facile synthesis of wide-bandgap fluorinated graphene semiconductors. Chem Eur J. 2011; 17(32): 8896–8903.
  • Lee WH, Suk JW, Chou H, et al. Selective-area fluorination of graphene with fluoropolymer and laser irradiation. Nano Lett. 2012; 12(5): 2374–2378.
  • Bourlinos AB, Safarova K, Siskova K, et al. The production of chemically converted graphenes from graphite fluoride. Carbon. 2012; 50(3): 1425–1428.
  • Yang H, Chen M, Zhou H, et al. Preferential and reversible fluorination of monolayer graphene. J Phys Chem C. 2011; 115(34): 16844–16848.
  • Fyta M. Nitrogen-vacancy centers and dopants in ultrathin diamond films: electronic structure. J Phys Chem C. 2013; 117(41): 21376–21381.
  • Withers F, Bointon TH, Dubois M, et al. Nanopatterning of fluorinated graphene by electron beam irradiation. Nano Lett. 2011; 11(9): 3912–3916.
  • Zhu LY, Li W, Ding F. Giant thermal conductivity in diamane and the influence of horizontal reflection symmetry on phonon scattering. Nanoscale. 2019; 11(10): 4248–4257.
  • Zhu L, Zhang T. Suppressed thermal conductivity in fluorinated diamane: optical phonon dominant thermal transport. Appl Phys Lett. 2019; 115(15): 151904.

Related articles