Skip to main content

Emerging applications of nanodiamonds in photocatalysis

Li-Xia Su ,
Yu Cao ,
Hao-Shan Hao ,
Qi Zhao ,
Jinfang Zhi
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2020.1869431

Abstract

As a fascinating nanocarbon photocatalytic material, nanodiamonds (NDs) have attracted more and more attention recently due to their high chemical stability, high carrier mobility, narrowing band gap, easy surface modification, and mass production. This review summarizes the latest progress related to elaborated construction of NDs and NDs-based nanocomposite, including microstructure regulation of pristine NDs, elemental doping and formation a heterojunction by coupled with another semiconductor. The construction and properties of each category of NDs-based material are reviewed on their structure, preparation methods, texture control, and photocatalytic performance. Photocatalytic applications of NDs-based nanomaterials for hydrogen evolution from water splitting, organic pollution degradation, CO2 reduction, N2 reduction, graphene oxide reduction, and the latest advances in photocatalytic reaction mechanism have been also systematically reviewed. Finally, the challenges and prospects of the photocatalytic application of NDs are also briefly analyzed.

Keywords

nanocarbon; nanodiamond; photocatalysis; H2 evolution; pollution degradation; CO2 reduction

References

  • Danilenko VV. On the history of the discovery of nanodiamond synthesis. Phys Solid State. 2004; 46(4): 595–599.
  • Chang YR, Lee HY, Chen K, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol. 2008;3(5): 284–288.
  • Mochalin VN, Gogotsi Y. Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am Chem Soc. 2009;131(13): 4594–4595.
  • Rosenholm JM, Vlasov II, Burikov SA, et al. Nanodiamond-based composite structures for biomedical imaging and drug delivery. J Nanosci Nanotechnol. 2015; 15(2): 959–971.
  • Turcheniuk K, Mochalin VN. Biomedical applications of nanodiamond. Nanotechnology. 2017; 28(25): 252001.
  • Su LX, Lou Q, Jiao Z, et al. Plant cell imaging based on nanodiamonds with excitation-dependent fluorescence. Nanoscale Res Lett. 2016;11(1): 425.
  • Maze JR, Stanwix PL, Hodges JS, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature. 2008; 455(7213): 644–647.
  • Wang N, Liu GQ, Leong WH, et al. Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions. Phys Rev X. 2018; 8(1): 011042.
  • Tallaire A, Brinza O, Feudis MD, et al. Synthesis of loose nanodiamonds containing nitrogen-vacancy centers for magnetic and thermal sensing. ACS Appl Nano Mater. 2019; 2(9): 5952–5962.
  • Shimkunas RA, Robinson E, Lam R, et al. Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials. 2009; 30(29): 5720–5728.
  • Vaijayanthimala V, Lee DK, Kim SV, et al. Nanodiamond-mediated drug delivery and imaging: challenges and opportunities. Expert Opini Drug Deliv. 2015; 12(5): 735–749.
  • Chan MS, Liu LS, Leung HM, et al. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017; 9(13):11780–11789.
  • Greentree AD. Nanodiamonds in Fabry-Perot cavities: a route to scalable quantum computing. New J Phys. 2016; 18(2): 021002.
  • Xu Z, Yin ZQ, Han Q, et al. Quantum information processing with closely-spaced diamond color centers in strain and magnetic fields. Opt Mater Express. 2019; 9(12): 4654–4668.
  • Osswald S, Yushin G, Mochalin V, et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc. 2006; 128(35): 11635–11642.
  • Zhang Y, Rhee KY, Hui D, et al. A critical review of nanodiamond based nanocomposites: synthesis, properties and applications. Compos Part B Eng. 2018;143: 19–27.
  • Etemadi H, Yegani R, Babaeipour V. Performance evaluation and antifouling analyses of cellulose acetate/nanodiamond nanocomposite membranes in water treatment. J Appl Polym Sci. 2017; 134(21): 44873.
  • Liu J, Wang P, Qu W, et al. Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene. Appl Catal B. 2019; 257: 117880.
  • Lin Z, Xiao J, Li L, et al. Nanodiamond‐embedded p‐type copper (I) oxide nanocrystals for broad‐spectrum photocatalytic hydrogen evolution. Adv Energy Mater. 2016; 6(4): 1501865.
  • Su LX, Liu ZY, Ye YL, et al. Heterostructured boron doped nanodiamonds@g-C3N4 nanocomposites with enhanced photocatalytic capability under visible light irradiation. Int J Hydrogen Energy. 2019; 44(36): 19805–19815.
  • Ekimov E, Kondrina K, Mordvinova N, et al. High-pressure, high-temperature synthesis of nanodiamond from adamantane. Inorg Mater. 2019;55(5): 437–442.
  • Shakhov FM, Abyzov AM, Takai K. Boron doped diamond synthesized from detonation nanodiamond in a COH fluid at high pressure and high temperature. J Solid State Chem. 2017;256: 72–92.
  • Ekimov E, Kondrin M, Lyapin S, et al. High-pressure synthesis and optical properties of nanodiamonds obtained from halogenated adamantanes. Diamond Relat Mater. 2020; 103: 107718.
  • Dolmatov VY. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ Chem Rev. 2007; 76(4): 339–360.
  • Shery L. Size dependent surface reconstruction in detonation nanodiamonds. Nanoscale Horiz. 2018; 3(2): 213–217.
  • Hao J, Pan L, Gao S, et al. Production of fluorescent nano-diamonds through femtosecond pulsed laser ablation. Opt Mater Express. 2019; 9(12): 4734–4741.
  • Gorrini F, Cazzanelli M, Bazzanella N, et al. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci Rep. 2016; 6(1): 1–9.
  • Basso L, Bazzanella N, Cazzanelli M, et al. On the route towards a facile fluorescent nanodiamonds laser-synthesis. Carbon. 2019; 153: 148–155.
  • Khan MB, Khan ZH. Nanodiamonds: synthesis and applications. In: Khan Z, editors. Nanomaterials and their applications. Singapore: Springer, 2018; p. 1–26.
  • Gottlieb S, Wöhrl N, Schulz S, et al. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper. Springerplus. 2016; 5(1): 568.
  • Liu Y, Tzeng YK, Lin D, et al. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes. Joule. 2018; 2(8): 1595–1609.
  • Basso L, Gorrini F, Bazzanella N, et al. The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient. Appl Phys A. 2018; 124(1): 72.
  • Plotnikov V, Makarov S, Bogdanov D, et al. The structure of detonation nanodiamond particles. AIP Conf Proc. 2016; 1785(1): 040045.
  • Kausar A. Properties and applications of nanodiamond nanocomposite. Am J Nanosci Nanotechnol Res. 2018; 6(1): 46–54.
  • Liu T, Ali S, Li B, et al. Revealing the role of sp2@ sp3 structure of nanodiamond in direct dehydrogenation: insight from DFT study. ACS Catal. 2017; 7(6): 3779–3785.
  • Ferrari AC, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos Trans R Soc London Ser A Math Phys Eng Sci. 2004; 362(1824): 2477–2512.
  • Su LX, Lou Q, Zang JH, et al. Temperature-dependent fluorescence in nanodiamonds. Appl Phys Express. 2017; 10(2): 025102.
  • Liang B, Zhang L, Wang W, et al. Nanodiamond core/onion-like carbon shell materials with excellent visible light photocatalytic activity. Mater Res Express. 2019; 6(4): 045609.
  • Su LX, Huang QZ, Lou Q, et al. Effective light scattering and charge separation in nanodiamond@ g-C3N4 for enhanced visible-light hydrogen evolution. Carbon. 2018; 139: 164–171.
  • Li Y, He S, Zhou Z, et al. Carboxylated nanodiamond-enhanced photocatalytic membranes with improved antifouling and self-cleaning properties. Ind Eng Chem Res. 2020; 59(8): 3538–3549.
  • Pastrana-Martínez LM, Morales-Torres S, Carabineiro SA, et al. Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation. Appl Surf Sci. 2018; 458: 839–848.
  • Khan M, Hayat A, Mane SKB, et al. Functionalized nano diamond composites for photocatalytic hydrogen evolution and effective pollutant degradation. Int J Hydrogen Energy. 2020; 45(53): 29070–29081.
  • Castro AH, Guinea F, PeresNMR, et al. The electronic properties of graphene. RvMP. 2009; 81(1): 109–162.
  • Geim AK. Graphene: status and prospects. Science. 2009; 324(5934): 1530–1534.
  • Muschi M, Serre C. Progress and challenges of graphene oxide/metal-organic composites. Coord Chem Rev. 2019; 387: 262–272.
  • Kim HI, Kim HN, Weon S, et al. Robust co-catalytic performance of nanodiamonds loaded on WO3 for the decomposition of volatile organic compounds under visible light. ACS Catal. 2016; 6(12): 8350–8360.
  • Liang B, Zhang W, Zhang Y, et al. Nanodiamond incorporated in SnO composites with enhanced visible-light photocatalytic activity. Diamond Relat Mater. 2018; 89: 108–113.
  • Lin Z, Li J, Zheng Z, et al. A floating sheet for efficient photocatalytic water splitting. Adv Energy Mater. 2016; 6(15): 1600510.
  • Jang DM, Myung Y, Im HS, et al. Nanodiamonds as photocatalysts for reduction of water and graphene oxide. Chem Commun. 2012; 48(5): 696–698.
  • Su LX, Lou Q, Shan CX, et al. Ag/Nanodiamond/g-C3N4 heterostructures with enhanced visible-light photocatalytic performance. Appl Surf Sci. 2020; 525: 146576.
  • Zhou L, Zhang H, Guo X, et al. Metal-free hybrids of graphitic carbon nitride and nanodiamonds for photoelectrochemical and photocatalytic applications. J Colloid Interface Sci. 2017; 493: 275–280.
  • Haleem YA, He Q, Liu D, et al. Facile synthesis of mesoporous detonation nanodiamond-modified layers of graphitic carbon nitride as photocatalysts for the hydrogen evolution reaction. RSC Adv. 2017; 7(25): 15390–15396.
  • Hunge Y, Yadav A, Khan S, et al. Photocatalytic degradation of bisphenol A using titanium dioxide@ nanodiamond composites under UV light illumination. J Colloid Interface Sci. 2021; 582: 1058–1066.
  • Henych J, Stehlík Š, Mazanec K, et al. Reactive adsorption and photodegradation of soman and dimethyl methylphosphonate on TiO2/nanodiamond composites. Appl Catal B. 2019; 259: 118097.
  • Kim KD, Dey NK, Seo HO, et al. Photocatalytic decomposition of toluene by nanodiamond-supported TiO2 prepared using atomic layer deposition. Appl Catal A. 2011; 408(1–2): 148–155.
  • Pichot V, Comet M, Fousson E, et al. An efficient purification method for detonation nanodiamonds. Diamond Relat Mater. 2008; 17(1): 13–22.
  • Shenderova O, Koscheev A, Zaripov N, et al. Surface chemistry and properties of ozone-purified detonation nanodiamonds. J Phys Chem C. 2011; 115(20): 9827–9837.
  • Hong SP, Kim TH, Lee SW. Plasma-assisted purification of nanodiamonds and their application for direct writing of a high purity nanodiamond pattern. Carbon. 2017; 116: 640–647.
  • Rouhani P, Govindaraju N, Iyer JK, et al. Purification and functionalization of nanodiamond to serve as a platform for amoxicillin delivery. Mater Sci Eng C. 2016; 63: 323–332.
  • Sun X, Wang R, Su D. Research progress in metal-free carbon-based catalysts. Chin J Catal. 2013; 34(3): 508–523.
  • Duan X, Su C, Zhou L, et al. Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Appl Catal B. 2016; 194: 7–15.
  • Krueger A, Lang D. Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater. 2012; 22(5): 890–906.
  • Xu X, Yu Z, Zhu Y, et al. Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond. J Solid State Chem. 2005; 178(3): 688–693.
  • Mona J, Tu JS, Kang TY, et al. Surface modification of nanodiamond: photoluminescence and Raman studies. Diamond Relat Mater. 2012; 24: 134–138.
  • Reineck P, Lau DW, Wilson ER, et al. Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano. 2017; 11(11): 10924–10934.
  • Liu Y, Khabashesku VN, Halas NJ. Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. J Am Chem Soc. 2005; 127(11): 3712–3713.
  • Lin Y, Sun X, Su DS, et al. Catalysis by hybrid sp2/sp3 nanodiamonds and their role in the design of advanced nanocarbon materials. Chem Soc Rev. 2018; 47(22): 8438–8473.
  • Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol. 2010; 5(9): 651–654.
  • Zeiger M, Jäckel N, Mochalin VN, et al. Carbon onions for electrochemical energy storage. J Mater Chem A. 2016; 4(9): 3172–3196.
  • Spitsyn B, Davidson J, Gradoboev M, et al. Inroad to modification of detonation nanodiamond. Diamond Relat Mater. 2006; 15(2–3): 296–299.
  • Liu Y, Chen S, Quan X, et al. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc. 2015; 137(36): 11631–11636.
  • Liu Y, Zhang Y, Cheng K, et al. Selective electrochemical reduction of carbon dioxide to ethanol on a boron‐and nitrogen‐Co‐doped nanodiamond. Angew Chem. 2017; 129(49): 15813–15817.
  • Petit T, Arnault JC, Girard HA, et al. Oxygen hole doping of nanodiamond. Nanoscale. 2012; 4(21): 6792–6799.
  • Fokin AA, Schreiner PR. Band gap tuning in nanodiamonds: first principle computational studies. Mol Phys. 2009; 107(8–12): 823–830.
  • Liu G, Wang L, Yang HG, et al. Titania-based photocatalysts-crystal growth, doping and heterostructuring. J Mater Chem. 2010; 20(5): 831–843.
  • Jiang J, Cao S, Hu C, et al. A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chin J Catal. 2017; 38(12): 1981–1989.
  • Kumaravel V, Mathew S, Bartlett J, et al. Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl Catal B. 2019; 244: 1021–1064.
  • Liu L, Li S, An Y, et al. Hybridization of nanodiamond and CuFe-LDH as heterogeneous photoactivator for visible-light driven photo-fenton reaction: photocatalytic activity and mechanism. Catalysts. 2019; 9(2): 118.
  • Pastrana‐Martínez L, Carabineiro S, Buijnsters J, et al. Photocatalytic activity of nanocarbon‐TiO2 composites with gold nanoparticles for the degradation of water pollutants. In: Mishra AK, editors. Smart materials for waste water applications. Beverly: Scrivener Publishing LLC, 2016;p. 87–108.
  • Pastrana-Martínez LM, Morales-Torres S, Carabineiro SAC, et al. Nanodiamond-TiO2 composites for heterogeneous photocatalysis. Chempluschem. 2013; 78(8): 801–807.
  • Sampaio MJ, Pastrana-Martínez LM, Silva AMT, et al. Nanodiamond-TiO2 composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light. RSC Adv. 2015; 5(72): 58363–58370.
  • Zhang L, Qin M, Yu W, et al. Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J Electrochem Soc. 2017; 164(14): H1086–H1090.
  • Nguyen CH, Fu CC, Juang RS. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J Clean Prod. 2018; 202: 413–427.
  • Ling LL, Feng Y, Li H, et al. Microwave induced surface enhanced pollutant adsorption and photocatalytic degradation on Ag/TiO2. Appl Surf Sci. 2019; 483: 772–778.
  • Alamelu K, Raja V, Shiamala L, et al. Biphasic TiO2 nanoparticles decorated graphene nanosheets for visible light driven photocatalytic degradation of organic dyes. Appl Surf Sci. 2018; 430: 145–154.
  • Habisreutinger SN, Schmidt‐Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed. 2013; 52(29): 7372–7408.
  • Zhou M, Wang S, Yang P, et al. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018; 8(6): 4928–4936.
  • Vu NN, Kaliaguine S, Do TO. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight‐driven photocatalytic reduction of CO2 into fuels. Adv Funct Mater. 2019; 29(31): 1901825.
  • Zhang L, Zhu D, Nathanson G, et al. Selective photoelectrochemical reduction of aqueous CO2 to CO by solvated electrons. Angew Chem. 2014; 126(37): 9904–9908.
  • Zhang L, Hamers RJ. Photocatalytic reduction of CO2 to CO by diamond nanoparticles. Diamond Relat Mater. 2017; 78: 24–30.
  • Lashgari M, Zeinalkhani P. Photocatalytic N2 conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: a novel hydrogenation strategy and basic understanding of the phenomenon. Appl Catal A. 2017; 529: 91–97.
  • Zhao Y, Zheng L, Shi R, et al. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3. Adv Energy Mater. 2020; 10(34): 2002199.
  • Zhu D, Zhang L, Ruther RE, et al. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nature Mater. 2013; 12(9): 836–841.
2239
Favorite
Share

Related articles