跳转到主要内容

CVD diamond: a review on options and reality

Christoph E. Nebel
2023年 第3卷 第1期
DOI: 10.1080/26941112.2023.2201592

摘要

In the future, electronic parts will penetrate everything, generating a new and fast-growing pollution problem. Future devices therefore need to be environmentally friendly with strong recycling options. A paradigm change in semiconductor technology is predicted based on applications of better suited materials which can fulfil these criteria. Carbon based materials and here especially diamond are promising candidates. Bulk and surface properties of diamond are introduced in combination with applications in power electronics, quantum technology, bio-and electrochemistry and MEMS. Large amounts of diamond seeds and wafers will be required to approach commercial markets. Their availability in combination with quality and size as well as required energies for production are introduced. The production of CVD diamond is currently about 100–250 times more intense with respect to energy than Silicon. A problem which is addressed by use of new solid-sates microwave sources. The definition of “green diamond” is given taking into account requirements with respect to energy and methane/hydrogen production. A brief discussion and comparison of diamond global markets and related potentials in comparison to SiC and GaN is given.

关键词

CVD diamond; properties; heteroepitaxy; applications; green diamond; deposition energy demand

参考文献

  • Kamina S. Trillion sensors and MEMS. Sensors Mater. 2018; 30(4): 723–773.
  • Yole. Emerging semiconductor substrates. Lyon, France: YOLE INTELLIGENCE; 2019.
  • Lee K-W. 3-D hetero-integration technologies for multifunctional convergence systems. J Microelectron Packag Soc. 2015;22(2):11–19.
  • Sang L. Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices. Funct Diamond. 2021;1(1):174–188.
  • Nebel CE, Aharonovich I, Mizuochi N, et al. editors. Diamond for quantum applications part 1. Semiconductors and semimetals 103. London: Elsevier; 2020. ISBN 978-0-12-820240-1.
  • Nebel CE, Aharonovich I, Mizuochi N, et al. editors. Diamond for quantum applications part 2. Semiconductors and semimetals 104. London: Elsevier; 2021. ISBN 978-0-323-85024-7.
  • Brillas E, Martinez-Huitle CA, editors. Synthetic diamond films, preparation, electrochemistry, characterization and applications. Wiley Series on Electrocatalysis and Electrochemistry, John Wiley & Sons. 2011. ISBN 978-1-118-06236-4.
  • Parangi T. A review on electrochemical and photochemical processes for hydrogen production. Comments Inorg Chem. 2022; 42(5): 271–336.
  • REACH: Registration, Evaluation, Authorization and Restriction of Chemicals: see : https://en.wikipedia.org/wiki/Registration,_Evaluation,_Authorisation_ad_Restriction_of_Chemicals.
  • Gogotsi Y, Presser V, editors. Carbon nanomaterials. CRC Press; 2021. ISBN 9781138076815.
  • Sarin VK, Nebel CE, editors. Comprehensive hard materials, super hard materials. Vol. 3, London: Elsevier; 2014. ISBN 978-0-444-63383-5.
  • Bragg WH, Bragg WL. The structure of the diamond. Proc R Soc. 1913;156(610):277–291.
  • Raman CV. Allotropic modifications of diamond. Nature. 1945;156(3949):22–23.
  • Bundy FP, Hall HT, Strong HM, et al. Man-made diamonds. Nature. 1955;176(4471):51–55.
  • Eversole WG. Synthesis of diamond, US patents 3,030,187,3,030,188, filed July 23, 1958.
  • Angus JC, Will HA, Stanko WS. Growth of diamond seed crystals by vapor deposition. J Appl Phys. 1968;39(6):2915–2922.
  • Spitsyn BV, Deryagin BV. A technique of diamond growth on a diamond face, USSR Inventor’s Certificate 339,134 filed in July 10, 1956, published in a Bulletin of Inventions No 17; 1980, p. 323.
  • Matsumoto S, Sato Y, Tsutsumi M, et al. Growth of diamond particles from methane-hydrogen gas. J Mater Sci. 1982;17(11):3106–3112.
  • Kamo M, Sato Y, Matsumoto S, et al. Diamond synthesis from gas in microwave plasma. J Cryst Growth. 1983;62(3):642–644.
  • Angus JC. Diamond synthesis by chemical vapor deposition: the early years. Diamond Relat Mater. 2014;49:77–86.
  • Sumiya H, Tamasaku K. Large defect-free synthetic type IIa diamond crystals synthesized via high pressure and high temperature. Jpn J Appl Phys. 2012;51(9R):090102.
  • Kato H. Conductivity and impurity doping on single crystal diamond. In: Sarin VK, Nebel CE, editors. Comprehensive hard materials, super hard materials. Vol. 3, London: Elsevier; 2014, pp. 305–319. ISBN 9780-444-63383-5.
  • Araujo D, Suzuki M, Lloret F, et al. Diamond for electronics: materials, processing and devices. Materials. 2021;14(22):7081.
  • Nebel CE. General properties of diamond. In: Arnault J-C, editors, Nanodiamonds, advanced material analysis, properties and applications, London: Elsevier; 2017. pp. 1–24. ISBN 9780-323-43029-6.
  • Mildren RP. Intrinsic optical properties of diamond. In: Mildren RP, Rabeau JR, editors, Optical engineering of diamond, Wiley-VCH; 2013. pp. 1–34. ISBN 9783527411023.
  • Gruber A, Dräbenstedt A, Tietz C, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science. 1997;276(5321):2012–2014.
  • Yamasaki S, Makino T, Takeuchi D, et al. Potential of diamond power devices. In: Proceedings of the 25th International Symposium on Power Semiconductor Devices & ICs, Kanazawa, 6.2; 2013, pp. 307–310.
  • Iwaki M, Sato S, Takahashi K, et al. Electrical-conductivity of nitrogen and argon implanted diamond. Nucl Instrum Methods Phys Res. 1983;209–210:1129–1133.
  • Angus JC. Electrochemsitry on diamond: history and current status. In: Brillas E, Martinez-Huitle CA, editors, Synthetic diamond films, preparation, electrochemistry, characterization and applications, John Wiley&Sons; 2011, pp. 3–20. ISBN 9781-118-06236-4.
  • Nebel CE. Surface electronic properties of diamond. In: Sarin VK, Nebel CE, editors, Comprehensive hard materials, super hard materials, Vol. 3, London: Elsevier; 2014, pp. 339–364. ISBN 9780-444-63383-5.
  • Salvadori MC, Araújo WWR, Teixeira FS, et al. Termination of diamond surfaces with hydrogen, oxygen and fluorine using a small, simple plasma gun. Diamond Relat Mater. 2010;19(4):324–328.
  • Widmann CJ, Giese C, Wolfer M, et al. F- and Cl-terminations of (100) oriented single crystalline diamond. Phys Status Solidi A. 2014;211(10):2328–2332.
  • Maier F, Ristein J, Ley L. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys Rev B. 2001;64(16):165411.
  • Cui JB, Ristein J, Ley L. Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys Rev Lett. 1998;81(2):429–432.
  • Zhu D, Zhang LH, Ruther RE, et al. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat Mater. 2013;12(9):836–841.
  • Maier F, Riedel M, Mantel B, et al. Origin of surface conductivity in diamond. Phys Rev Lett. 2000;85(16):3472–3475.
  • Sumiya H. HPHT synthesis of large, high quality single crystal diamond. In: Nebel CE, editors, Comprehensive hard materials, Vol. 3, London: Elsevier; 2014, pp. 109–215. ISBN 9780-444-63383-5.
  • Sumiya H, Satoh S. High-pressure synthesis of high-purity diamond crystal. Diamond Relat Mater. 1996;5(11):1359–1365.
  • Mokuno Y, Chayahara A, Soda Y, et al. Synthesizing single-crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD. Diamond Relat Mater. 2005;14(11–12):1743–1746.
  • Chayahara A, Mokuno Y, Horino Y, et al. The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD. Diamond Relat Mater. 2004;13(11–12):1954–1958.
  • Silva F, Achard J, Brinza O, et al. High quality, large surface area, homoepitaxial MPACVD diamond growth. Diamond Relat Mater. 2009;18(5–8):683–697.
  • Gicquel A, Silva F, Hassouni K. Diamond growth mechanisms in various environments. J Electrochem Soc. 2000;147(6):2218.
  • Geis MW, Smith HI, Argoitia A, et al. Large-area mosaic diamond films approaching single-crystal quality. Appl Phys Lett. 1991;58(22):2485–2487.
  • Yamada H, Chayahara A, Mokuno Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond. Appl Phys Lett. 2014;104(10):102110.
  • https://www.d-edp.jp/en/.
  • Zhu X, Liu J, Shao S, et al. Evolution of growth characteristics around the junction in the mosaic diamond. Diamond Relat Mater. 2021;120:108640.
  • Ohtsuka K, Suzuki K, Atsuhito Sawabe AS, et al. Epitaxial growth of diamond on iridium. Jpn J Appl Phys. 1996;35(8B):L1072.
  • Gsell S, Bauer T, Goldfuß J, et al. A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers. Appl Phys Lett. 2004;84(22):4541–4543.
  • Fischer M, Gsell S, Schreck M, et al. Preparation of 4-inch Ir/YSZ/Si(001) substrates for the large-area deposition of single-crystal diamond. Diamond Relat Mater. 2008;17(7–10):1035–1038.
  • Bauer T, Gsell S, Schreck M, et al. Growth of epitaxial diamond on silicon via iridium/SrTiO3 buffer layers. Diamond Relat Mater. 2005;14(3–7):314–317.
  • Schreck M. in, Vol Single crystal diamond growth on iridium. In: Nebel CE, editors, Comprehensive hard materials. Vol. 3, Elsevier; 2014, pp. 269–304. ISBN 9780-444-63383-5.
  • Yole Development. Emerging semiconductor substrates: market and Technology Trends; Lyon, France: YOLE INTELLIGENCE; 2019.
  • Sumiya H, Toda N, Nishibayashi Y, et al. Crystalline perfection of high purity synthetic diamond crystal. J Crystal Growth. 1997;178(4):485–494.
  • Ohmagari S, Yamada H, Tsubouchi N, et al. Large reduction of threading dislocations in diamond by hot-filament chemical vapor deposition accompanying W incorporations. Appl Phys Lett. 2018;113(3):032108.
  • Wang R, Lin F, Niu G, et al. Reducing threading dislocations of single-crystal diamond via in situ tungsten incorporation. Materials. 2022;15(2):444.
  • Rönsch S, Schneider J, Matthischke S, et al. Review on methanation – from fundamentals to current projects. Fuel. 2016;166:276–296.
  • https://www.thyssenkrupp.com/de/unternehmen/innovation/technologien-fuer-die-energiewende/wasserelektrolyse.html.
  • Idriss H. Hydrogen production from water: past and present. Curr Opin Chem Eng. 2020;29:74–82.
  • https://www.co2.earth/daily-co2#:∼:text=418.60%20ppm&text=This%20table%20presents%20the%20most,atmospheric%20CO2%20on%20the%20planet.
  • https://www.iea.org/reports/direct-air-capture.
  • Zhdanov V, Sokolova M, Smirnov P, et al. A comparative analysis of energy and water consumption of mined versus synthetic diamonds. Energies. 2021;14(21):7062.
  • Krishnan N, Boyd S, Somani A, et al. A hybride life cycle inventory of nano-scale semiconductor manufacturing. Environ Sci Technol. 2008;42(8):3069–3075.
  • Besen MM, Sevillano E, Smith DK. Microwave plasma reactor. Applied Science and Technology, United States Patent 5,556,475, Sep. 17, 1996.
  • Füner M, Wild C, Koidl P. Simulation and development of optimized microwave plasma reactors for diamond deposition. Surf Coat Technol. 1999;116–119:853–862.
  • Du ZL, Wu Z, Gan WW, et al. Multi-physics modeling and process simulation for a frequency-shifted solid-state source microwave oven. IEEE Access. 2019;7:184726–184733.
  • https://www.mordorintelligence.com/industry-reports/synthetic-diamond-market.
  • https://www.grandviewresearch.com/industry-analysis/silicon-carbide-market.
  • https://www.grandviewresearch.com/industry-analysis/gan-gallium-nitride-semiconductor-devices-market.
  • https://www.transparencymarketresearch.com/magnetometer-sensor-market.html.
  • https://www.adroitmarketresearch.com/industry-reports/nanodiamond-market.
  • Yole. Diamond Materials for Semiconductor Applications; 2013.
  • Yole. AlScN-MEMS-filter for high-frequency-communication: markets and properties; 2014.
收藏
分享

相关文章