Creation of shallow nitrogen vacancy centers in HPHT diamond surface via catalytic etching of transition metal
Keywords
Nitrogen vacancy color center; diamond; iron etching; quantum detection
References
-
Wilen CD, Abdullah S, Kurinsky NA, et al. Correlated charge noise and relaxation errors in superconducting qubits. Nature. 2021;594(7863):1–11. [Crossref] [Web of Science ®], [Google Scholar]
-
Vijay R, Slichter DH, Siddiqi I. Observation of quantum jumps in a superconducting artificial atom. Phys Rev Lett. 2011;106(11):110502. [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
-
Zhang D-W, Zhu Y-Q, Zhao YX, et al. Topological quantum matter with cold atoms. Adv Phys. 2018;67(4):253–402. [Taylor & Francis Online] [Web of Science ®], [Google Scholar]
-
Tomza M, Jachymski K, Gerritsma R, et al. Cold hybrid ion-atom systems. Rev Mod Phys. 2019;91(3):035001. [Crossref] [Web of Science ®], [Google Scholar]
-
Monroe C, Kim J. Scaling the ion trap quantum processor. Science. 2013;339(6124):1164–1169. [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
-
Peng Y, Huang H, Zhang Y, et al. A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat Commun. 2018;9(1):187. [Crossref] [PubMed], [Google Scholar]
-
Pezzagna S, Meijer J. Quantum computer based on color centers in diamond. Appl Phys Rev. 2021;8(1):011308. [Crossref] [Web of Science ®], [Google Scholar]
-
Jarmola A, Acosta VM, Jensen K, et al. Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. Phys Rev Lett. 2012;108(19):197601. [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
-
Wolf T, Neumann P, Nakamura K, et al. Subpicotesla diamond magnetometry. Phys Rev X. 2015;5(4):041001. [Web of Science ®], [Google Scholar]
-
Siyushev P, Nesladek M, Bourgeois E, et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science. 2019;363(6428):728–731. [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
-
Wu K, Vedelaar TA, Damle VG, et al. Applying NV center-based quantum sensing to study intracellular free radical response upon viral infections. Redox Biol. 2022;52:102279. [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
-
Lu FX. Past, present, and the future of the research and commercialization of CVD diamond in China. Funct Diam. 2022;2(1):119–141. [Taylor & Francis Online], [Google Scholar]
-
Nebel CE. CVD diamond: a review on options and reality. Funct Diam. 2023;3(1):1–10. [Taylor & Francis Online], [Google Scholar]
-
Kainuma Y, Hayashi K, Tachioka C, et al. Scanning diamond NV center magnetometer probe fabricated by laser cutting and focused ion beam milling. J Appl Phys. 2021;130(24):243903. [Crossref] [Web of Science ®], [Google Scholar]
-
Wunderlich R, Staacke R, Knolle W, et al. Magnetic field and angle-dependent photoluminescence of a fiber-coupled nitrogen vacancy rich diamond. J Appl Phys. 2021;130(12):124901. [Crossref] [Web of Science ®], [Google Scholar]
-
Tsukamoto M, Ogawa K, Ozawa H, et al. Vector magnetometry using perfectly aligned nitrogen-vacancy center ensemble in diamond. Appl Phys Lett. 2021;118(26):264002. [Crossref] [Web of Science ®], [Google Scholar]
-
Kawai S, Yamano H, Sonoda T, et al. Nitrogen-terminated diamond surface for nanoscale NMR by shallow nitrogen-vacancy centers. J Phys Chem C. 2019;123(6):3594–3604. [Crossref] [Web of Science ®], [Google Scholar]
-
Gorrini F, Dorigoni C, Olivares-Postigo D, et al. Long-lived ensembles of shallow NV– centers in flat and nanostructured diamonds by photoconversion. ACS Appl Mater Interfaces. 2021;13(36):43221–43232. [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
-
Lesik M, Raatz N, Tallaire A, et al. Production of bulk NV Centre arrays by shallow implantation and diamond CVD overgrowth. Phys Status Solidi A. 2016;213(10):2594–2600. [Crossref] [Web of Science ®], [Google Scholar]
-
Meirzada I, Hovav Y, Wolf SA, et al. Negative charge enhancement of near-surface nitrogen vacancy centers by multicolor excitation. Phys Rev B. 2018;98(24):245411. [Crossref] [Web of Science ®], [Google Scholar]
-
Lobaev MA, Gorbachev AM, Bogdanov SA, et al. NV-center formation in single crystal diamond at different CVD growth conditions. Phys Status Solidi A. 2018;215(22):1800205. [Crossref] [Web of Science ®], [Google Scholar]
-
Edmonds AM, D’Haenens-Johansson UFS, Cruddace RJ, et al. Production of oriented nitrogen-vacancy color centers in synthetic diamond. Phys Rev B. 2012;86(3):035201. [Crossref] [Web of Science ®], [Google Scholar]
-
Zhang X-M, Wang S-Y, Shi Y-B, et al. Quantitative analysis of spectral characteristics and concentration of ensembles of NV − centers in diamond. Diam Relat Mater. 2017;76:21–26. [Crossref] [Web of Science ®], [Google Scholar]
-
Mindarava Y, Blinder R, Laube C, et al. Efficient conversion of nitrogen to nitrogen-vacancy centers in diamond particles with high-temperature electron irradiation. Carbon. 2020;170:182–190. [Crossref] [Web of Science ®], [Google Scholar]
-
Huang Z, Li W-D, Santori C, et al. Diamond nitrogen-vacancy centers created by scanning focused helium ion beam and annealing. Appl Phys Lett. 2013;103(8):081906. [Crossref] [Web of Science ®], [Google Scholar]
-
Groot-Berning K, Jacob G, Osterkamp C, et al. Fabrication of 15NV- centers in diamond using a deterministic single ion implanter. New J Phys. 2021;23(6):063067. [Crossref] [Web of Science ®], [Google Scholar]
-
Kononenko VV, Vlasov II, Gololobov VM, et al. Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique. Appl Phys Lett. 2017;111(8):081101. [Crossref] [Web of Science ®], [Google Scholar]
-
Rong Y, Ju Z, Ma Q, et al. Efficient generation of nitrogen vacancy centers by laser writing close to the diamond surface with a layer of silicon nanoballs. New J Phys. 2020;22(1):013006. [Crossref] [Web of Science ®], [Google Scholar]
-
Liu B, Bi T, Fu Y, et al. MOSFETs on (110) C–H diamond: ALD Al2O3/diamond interface analysis and high performance Normally-OFF operation realization. IEEE Trans Electron Devices. 2022;69(3):949–955. [Crossref] [Web of Science ®], [Google Scholar]
-
Liu K, Lv Z, Dai B, et al. High-selectivity anisotropic etching of single-crystal diamond by H plasma using iron catalysis. Diam Relat Mater. 2018;86:186–192. [Crossref] [Web of Science ®], [Google Scholar]
-
Allen GL, Bayles RA, Gile WW, et al. Small particle melting of pure metals. Thin Solid Films. 1986;144(2):297–308. [Crossref] [Web of Science ®], [Google Scholar]
-
Gottfried BS, Lee CJ, Bell KJ. The leidenfrost phenomenon: film boiling of liquid droplets on a flat plate. Int J Heat Mass Transf. 1966;9(11):1167–1188. [Crossref] [Web of Science ®], [Google Scholar]
-
Liu K, Zhang S, Liu B, et al. Impact of positive space charge depletion layer on negatively charged and neutral centers in gold–diamond Schottky junctions. Carbon. 2019;153:381–388. [Crossref] [Web of Science ®], [Google Scholar]
-
Ralchenko VG, Kononenko TV, Pimenov SM, et al. Catalytic interaction of Fe, Ni and Pt with diamond films: patterning applications. Diam Relat Mater. 1993;2(5–7):904–909. [Crossref] [Web of Science ®], [Google Scholar]
-
Ohashi T, Sugimoto W, Takasu Y. Catalytic etching of {100}-oriented diamond coating with Fe, Co, Ni, and Pt nanoparticles under hydrogen. Diam Relat Mater. 2011;20(8):1165–1170. [Crossref] [Web of Science ®], [Google Scholar]
-
Takasu Y, Konishi S, Miyoshi R, et al. Catalytic linear grooving of graphite surface layers by Pt, Ru, and PtRu nanoparticles. Chem Lett. 2005;34(7):1008–1009. [Crossref] [Web of Science ®], [Google Scholar]
-
Pan ZJ, Yang RT. The mechanism of methane formation from the reaction between graphite and hydrogen. J Catal. 1990;123(1):206–214. [Crossref] [Web of Science ®], [Google Scholar]
-
Wood BJ, Wise H. Reaction kinetics of gaseous hydrogen atoms with graphite. J Phys Chem. 1969;73(5):1348–1351. [Crossref] [Web of Science ®], [Google Scholar]
-
Matsui T, Sato H, Kita K, et al. Hexagonal nanopits with the zigzag edge state on graphite surfaces synthesized by hydrogen-plasma etching. J Phys Chem C. 2019;123(36):22665–22673. [Crossref] [Web of Science ®], [Google Scholar]
-
Long L, Zhou W, Tang J, et al. Experiment study on etching process of graphite electrode by DC hydrogen plasma. Plasma Processes & Polymers. 2020;17(7):1900242. [Crossref] [Web of Science ®], [Google Scholar]
-
Inyushkin AV, Taldenkov AN, Ralchenko VG, et al. Thermal conductivity of high purity synthetic single crystal diamonds. Phys Rev B. 2018;97(14):144305. [Crossref] [Web of Science ®], [Google Scholar]
-
Ni Z, Wang Y, Yu T, et al. Raman spectroscopy and imaging of graphene. Nano Res. 2008;1(4):273–291. [Crossref] [Web of Science ®], [Google Scholar]
-
Kumar R, Mehta BR, Bhatnagar M, et al. Graphene as a transparent conducting and surface field layer in planar Si solar cells. Nanoscale Res Lett. 2014;9(1):349. [Crossref] [PubMed], [Google Scholar]
-
Ichikawa K, Kodama H, Suzuki K, et al. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching. Thin Solid Films. 2016;600:142–145. [Crossref] [Web of Science ®], [Google Scholar]
-
Bluvstein D, Zhang Z, Jayich ACB. Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers. Phys Rev Lett. 2019;122(7):076101. [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
-
Neu E, Albrecht R, Fischer M, et al. Electronic transitions of single silicon vacancy centers in the near-infrared spectral region. Phys Rev B. 2012;85(24):245207. [Crossref] [Web of Science ®], [Google Scholar]
-
Mehedi H-A, Hebert C, Ruffinatto S, et al. Formation of oriented nanostructures in diamond using metallic nanoparticles. Nanotechnology. 2012;23(45):455302. [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
-
Deák P, Aradi B, Kaviani M, et al. Formation of NV centers in diamond: a theoretical study based on calculated transitions and migration of nitrogen and vacancy related defects. Phys Rev B. 2014;89(7):075203. [Crossref] [Web of Science ®], [Google Scholar]
-
Orwa JO, Ganesan K, Newnham J, et al. An upper limit on the lateral vacancy diffusion length in diamond. Diam Relat Mater. 2012;24:6–10. [Crossref] [Web of Science ®], [Google Scholar]
-
Wang J, Wan L, Chen J, et al. Surface patterning of synthetic diamond crystallites using nickel powder. Diam Relat Mater. 2016;66:206–212. [Crossref] [Web of Science ®], [Google Scholar]
-
Anton R. On the reaction kinetics of Ni with amorphous carbon. Carbon. 2008;46(4):656–662. [Crossref] [Web of Science ®], [Google Scholar]