Skip to main content
Review Article

Single-crystal diamond growth by hot-filament CVD: a recent advances for doping, growth rate and defect controls

Shinya Ohmagari
Volume 3, Issue 1 (2023)
DOI: 10.1080/26941112.2023.2259941


Diamond; Schottky; dislocation; doping; CVD; hot-filament


  • Ueno K, Tadokoro T, Ueno Y, et al. Heat and radiation resistances of diamond semiconductor in gamma-ray detection. Jpn J Appl Phys. 2019;58(10):1.  [Crossref] [Web of Science ®], [Google Scholar]
  • Yamaguchi T, Umezawa H, Ohmagari S, et al. Radiation hardened H-diamond MOSFET (RADDFET) operating after 1 MGy irradiation. Appl Phys Lett. 2021;118:162105.  [Crossref] [Web of Science ®], [Google Scholar]
  • Sittimart P, Ohmagari S, Umezawa H, et al. Thermally ­stable and radiation-proof visible-light photodetectors made from N-doped diamond. Adv Opt Mater. 2023;11(12):2203006.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Y. Tanimura, J. Kaneko, M. Katagiri, Y. Ikeda, T. Nishitani, H. Takeuchi, T. Iida, High-temperature ­operation of a radiation detector made of a type IIa diamond single crystal synthesized by a HP/HT method. Nucl Instrum Methods Phys Res A. 2000;443(2–3): 325–15.  [Crossref] [Web of Science ®], [Google Scholar]
  • Koizumi S, Umezawa H, Pernot J, et al. Power electronics device applications of diamond semiconductors. Duxford (UK): Woodhead publishing; 2018.  [Google Scholar]
  • Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J Phys D: Appl Phys. 2020;53(9):093001.  [Crossref] [Web of Science ®], [Google Scholar]
  • Umezawa H. Recent advances in diamond power semiconductor devices. Mater Sci Semicond Process. 2018;78:147–156.  [Crossref] [Web of Science ®], [Google Scholar]
  • Wrachtrup J, Jelezko F. Processing quantum information in diamond. J Phys: Condens Matter. 2006;18(21):S807–S824.  [Crossref] [Web of Science ®], [Google Scholar]
  • Pezzagna S, Meijer J. Quantum computer based on color centers in diamond. Appl Phys Rev. 2021;8:011308.  [Google Scholar]
  • Maze JR, Stanwix PL, Hodges JS, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature. 2008;455(7213):644–647.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Matsumoto S, Sato Y, Kamo M, et al. Vapor deposition of diamond particles from methane. Jpn J Appl Phys. 1982;21(4A):L183–L185.  [Crossref], [Google Scholar]
  • Volpe PN, Muret P, Pernot J, et al. Extreme dielectric strength in boron doped homoepitaxial diamond. Appl Phys Lett. 2010;97:223501.  [Crossref] [Web of Science ®], [Google Scholar]
  • Blank VD, Bormashov VS, Tarelkin SA, et al. Power high-voltage and fast response schottky barrier diamond diodes. Diam Relat Mater. 2015;57:32–36.  [Crossref] [Web of Science ®], [Google Scholar]
  • Suzuki M, Sakai T, Makino T, et al. Electrical characterization of diamond PiN diodes for high voltage applications. Phys Status Solidi A. 2013;210(10):2035–2039.  [Crossref] [Web of Science ®], [Google Scholar]
  • Oi N, Inaba M, Okubo S, et al. Vertical-type two-­dimensional hole gas diamond metal oxide semiconductor field-effect transistors. Sci Rep. 2018;8(1):10660.  [Crossref] [PubMed], [Google Scholar]
  • Umezawa H, Matsumoto T, Shikata S-I. Diamond ­metal–semiconductor Field-Effect transistor with breakdown voltage over 1.5 kV. IEEE Electron Device Lett. 2014;35(11):1112–1114.  [Crossref] [Web of Science ®], [Google Scholar]
  • Matsumoto T, Kato H, Oyama K, et al. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Sci Rep. 2016;6(1):31585.  [Crossref] [PubMed], [Google Scholar]
  • Ohmagari S, Srimongkon K, Yamada H, et al. Low resistivity p + diamond (100) films fabricated by hot-­filament chemical vapor deposition. Diam Relat Mater. 2015;58:110–114.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ohmagari S, Matsumoto T, Umezawa H, et al. Ohmic contact formation to heavily boron-doped p + diamond prepared by hot-filament chemical vapor deposition. MRS Adv. 2016;1(51):3489–3495.  [Crossref], [Google Scholar]
  • Katamune Y, Mori D, Arikawa D, et al. n-Type doping of diamond by hot-filament chemical vapor deposition growth with phosphorus incorporation. Appl Phys A. 2020;126:879.  [Crossref] [Web of Science ®], [Google Scholar]
  • Tabakoya T, Kanada S, Wakui Y, et al. High-rate growth of single-crystalline diamond (100) films by hot-­filament chemical vapor deposition with tantalum filaments at 3000 °C. Phys Stat Sol (a). 2019;216(21):1900244.  [Crossref] [Web of Science ®], [Google Scholar]
  • Takamori Y, Nagai M, Tabakoya T, et al. Insight into temperature impact of ta filaments on high-growth-rate diamond (100) films by hot-filament chemical vapor deposition. Diam Relat Mater. 2021;118:108515.  [Crossref] [Web of Science ®], [Google Scholar]
  • Inushima T, Matsushita T, Ohya S, et al. Hopping conduction via the excited states of boron in p-type diamond. Diam Relat Mater. 2000;9(3–6):1066–1070.  [Crossref] [Web of Science ®], [Google Scholar]
  • Oyama K, Ri SG, Kato H, et al. High performance of diamond P+-i-n + junction diode fabricated using heavily doped p + and n + layers. Appl Phys Lett. 2009;94(15):2008–2010.  [Crossref] [Web of Science ®], [Google Scholar]
  • Makino T, Oyama K, Kato H, et al. Diamond electronic devices fabricated using heavily doped hopping p + and n + layers. Jpn J Appl Phys. 2014;53(5S1):05FA12.  [Crossref], [Google Scholar]
  • Thonke K. The boron acceptor in diamond. Semicond Sci Technol. 2003;18(3):S20–S26.  [Crossref] [Web of Science ®], [Google Scholar]
  • Takano Y. Superconductivity in CVD diamond films. J Phys: Condens Matter. 2009;21:253201.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Achard J, Issaoui R, Ac. Tallaire F, et al. Freestanding CVD boron doped diamond single crystals: a substrate for vertical power electronic devices? Phys Stat Sol (a). 2012;209(9):1651–1658.  [Crossref] [Web of Science ®], [Google Scholar]
  • Demlow SN, Rechenberg R, Grotjohn T. The effect of substrate temperature and growth rate on the doping efficiency of single crystal boron doped diamond. Diam Relat Mater. 2014;49:19–24.  [Crossref] [Web of Science ®], [Google Scholar]
  • Bogdanov SA, Vikharev AL, Drozdov MN, et al. Synthesis of thick and high-quality homoepitaxial diamond with high boron doping level: oxygen effect. Diam Relat Mater. 2017;74:59–64.  [Crossref] [Web of Science ®], [Google Scholar]
  • Butler JE, Vikharev A, Gorbachev A, et al. Nanometric diamond Delta doping with boron. Phys. Status Solidi RRL. 2017;11(1):1600329.  [Crossref], [Google Scholar]
  • Tokuda N, Umezawa H, Saito T, et al. Surface roughening of diamond (001) films during homoepitaxial growth in heavy boron doping. Diam Relat Mater. 2007;16(4–7):767–770.  [Crossref] [Web of Science ®], [Google Scholar]
  • Bustarret E, Gheeraert E, Watanabe K. Optical and ­electronic properties of heavily boron-doped homo-­epitaxial diamond. Phys Stat Sol (a). 2003;199(1):9–18.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ri S-G, Kato H, Ogura M, et al. Growth and characterization of boron-doped (111) CVD homoepitaxial diamond films. J Cryst Growth. 2007;299(2):235–242.  [Crossref] [Web of Science ®], [Google Scholar]
  • Issaoui R, Achard J, Silva F, et al. Growth of thick heavily boron-doped diamond single crystals: effect of microwave power density. Appl Phys Lett. 2010;97(18):17–20.  [Crossref] [Web of Science ®], [Google Scholar]
  • Hamada M, Teraji T, Ito T. Hillock-free homoepitaxial diamond (100) films grown at high methane concentrations. Jpn. J. Appl. Phys. 2005;44(1L):L216.  [Crossref], [Google Scholar]
  • Fiori A, Teraji T. Plasma etching phenomena in heavily boron-doped diamond growth. Diam Relat Mater. 2017;76:38–43.  [Crossref] [Web of Science ®], [Google Scholar]
  • Gerhardt PH, Homann KH. Ions and charged soot particles in hydrocarbon flames I. Nozzle beam sampling: velocity, energy, and mass analysis; total ion concentrations. Combust Flame. 1990;81(3-4):289–303.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ohmagari S, Yamada H, Umezawa H, et al. Characterization of free-standing single-crystal diamond prepared by hot-filament chemical vapor deposition. Diam Relat Mater. 2014;48:19–23.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ohmagari S, Yamada H, Umezawa H, et al. Doping-induced strain in heavily B-doped (100)diamond films prepared by hot-filament chemical vapor deposition. Thin Solid Films. 2019;680:85–88.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ohmagari S, Yamada H, Umezawa H, et al. Growth and characterization of freestanding p + diamond (100) substrates prepared by hot-filament chemical vapor deposition. Diam Relat Mater. 2018;81:33–37.  [Crossref] [Web of Science ®], [Google Scholar]
  • Wang L, Shen B, Sun F, et al. Effect of pressure on the growth of boron and nitrogen doped HFCVD diamond films on WC-Co substrate. Surf Interface Anal. 2015;47(5):572–586.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ohmagari S, Ogura M, Umezawa H, et al. Lifetime and migration length of B-related admolecules on diamond {1 0 0}-surface: comparative study of hot-filament and microwave plasma-enhanced chemical vapor deposition. J Cryst Growth. 2017;479:52–58.  [Crossref] [Web of Science ®], [Google Scholar]
  • Goss JP, Briddon PR. Theory of boron aggregates in diamond: first-principles calculations. Phys Rev B. 2006;73(8):1–8.  [Crossref] [Web of Science ®], [Google Scholar]
  • Comerford DW, Cheesman A, Carpenter TPF, et al. Experimental and modeling studies of B atom number density distributions in hot filament activated B2H6/H2 and B2H6/CH4/H2 gas mixtures. J Phys Chem A. 2006;110(9):2868–2875.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Ma J, Richley JC, Davies DRW, et al. Spectroscopic and modeling investigations of the gas phase chemistry and composition in microwave plasma activated B2H6/CH 4/Ar/H2 mixtures. J Phys Chem A. 2010;114(37):10076–10089.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • May PW, Harvey JN, Allan NL, et al. Simulations of chemical vapor deposition diamond film growth using a kinetic Monte Carlo model and two-dimensional models of microwave plasma and hot filament chemical vapor deposition reactors. J Appl Phys. 2010;108(11):114909.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ogura M, Kato H, Makino T, et al. Misorientation-angle dependence of boron incorporation into (0 0 1)-oriented chemical-vapor-deposited (CVD) diamond. J Cryst Growth. 2011;317(1):60–63.  [Crossref] [Web of Science ®], [Google Scholar]
  • Kawashima H, Kato H, Ogura M, et al. Desorption time of phosphorus during MPCVD growth of n-type (001) diamond. Diam Relat Mater. 2016;64:208–212.  [Crossref] [Web of Science ®], [Google Scholar]
  • Bar-Yam Y, Moustakas TD. Defect-induced stabilization of diamond films. Nature. 1989;342(6251):786–787.  [Crossref] [Web of Science ®], [Google Scholar]
  • Zou Y, Larsson K. Effect of boron doping on the CVD growth rate of diamond. J Phys Chem C. 2016;120(19):10658–10666.  [Crossref] [Web of Science ®], [Google Scholar]
  • Maeda H, Ohtsubo K, Kameta M, et al. Growth behavior of boron-doped diamond in microwave plasma-assisted chemical vapor deposition using trimethylboron as the dopant source. Diam Relat Mater. 1998;7(1):88–95.  [Crossref] [Web of Science ®], [Google Scholar]
  • Cao GZ, Schermer JJ, van Enckevort WJP, et al. Growth of {100} textured diamond films by the addition of nitrogen. J Appl Phys. 1996;79(3):1357–1364.  [Crossref] [Web of Science ®], [Google Scholar]
  • Chayahara A, Mokuno Y, Horino Y, et al. The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD. Diam Relat Mater. 2004;13(11–12):1954–1958.  [Crossref] [Web of Science ®], [Google Scholar]
  • Rodgers WJ, May PW, Allan NL, et al. Three-dimensional kinetic Monte Carlo simulations of diamond chemical vapor deposition. J Chem Phys. 2015;142(21):214707.  [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
  • Koizumi S, Teraji T, Kanda H. Phosphorus-doped chemical vapor deposition of diamond. Diam Relat Mater. 2000;9(3–6):935–940.  [Crossref] [Web of Science ®], [Google Scholar]
  • Kato H, Yamasaki S, Okushi H. n-type doping of (001)-oriented single-crystalline diamond by phosphorus. Appl Phys Lett. 2005;86(22):222111.  [Crossref] [Web of Science ®], [Google Scholar]
  • Kato H, Makino T, Yamasaki S, et al. N-Type diamond growth by phosphorus doping on (001)-oriented surface. J Phys D: Appl Phys. 2007;40(20):6189–6200.  [Crossref] [Web of Science ®], [Google Scholar]
  • Kato H, Ogura M, Makino T, et al. N-type control of single-crystal diamond films by ultra-lightly phosphorus doping. Appl Phys Lett. 2016;109:142102.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ohtani R, Yamamoto T, Janssens SD, et al. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond. Appl Phys Lett. 2014;105:232106.  [Crossref] [Web of Science ®], [Google Scholar]
  • Yamamoto T, Janssens SD, Ohtani R, et al. Toward highly conductive n-type diamond: incremental ­phosphorus-donor concentrations assisted by surface migration of admolecules. Appl Phys Lett. 2016;109(18):182102.  [Crossref] [Web of Science ®], [Google Scholar]
  • Balasubramaniam Y, Pobedinskas P, Janssens SD, et al. Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond. Appl Phys Lett. 2016;109(6):062105.  [Crossref] [Web of Science ®], [Google Scholar]
  • Okano K, Kiyota H, Iwasaki T, et al. Synthesis of n-type semiconducting diamond film using diphosphorus pentaoxide as the doping source. Appl Phys A. 1990;51(4):344–346.  [Crossref] [Web of Science ®], [Google Scholar]
  • Katamune Y, Izumi A, Ichikawa K, et al. Heavy phosphorus doping of diamond by hot-filament chemical vapor deposition. Diam Relat Mater. 2023;134:109789.  [Crossref] [Web of Science ®], [Google Scholar]
  • Yamada H. Numerical simulations to study growth of Single-Crystal diamond by using microwave plasma chemical vapor deposition with reactive (H, C, N) species. Jpn J Appl Phys. 2012;51(9R):090105.  [Crossref], [Google Scholar]
  • Mehta Menon P, Edwards A, Feigerle CS, et al. Filament metal contamination and Raman spectra of hot filament chemical vapor deposited diamond films. Diam Relat Mater. 1999;8:101–109.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ohmagari S, Srimongkon K, Amornkitbamrung V, et al. Unintentional tungsten incorporation in diamond during hot-filament chemical vapor deposition. Trans Mater Res Soc Japan. 2015;40(1):47–50.  [Crossref], [Google Scholar]
  • Ohmagari S, Yamada H, Tsubouchi N, et al. Large reduction of threading dislocations in diamond by hot-­filament chemical vapor deposition accompanying W incorporations. Appl Phys Lett. 2018;113(3):032108.  [Crossref] [Web of Science ®], [Google Scholar]
  • Wang R, Lin F, Niu G, et al. Reducing threading dislocations of Single-Crystal diamond via in situ tungsten incorporation. 2022.  [Google Scholar]
  • Ohmagari S, Yamada H, Tsubouchi N, et al. Toward high‐performance diamond electronics: Control and annihilation of dislocation propagation by metal‐assisted termination. Phys Stat Sol A. 2019;216(21):1900498.  [Crossref] [Web of Science ®], [Google Scholar]
  • Tsubouchi N, Mokuno Y, Shikata S. Characterizations of etch pits formed on single crystal diamond surface using oxygen/hydrogen plasma surface treatment. Diam Relat Mater. 2016;63:43–46.  [Crossref] [Web of Science ®], [Google Scholar]
  • Tallaire A, Ouisse T, Lantreibecq A, et al. Identification of dislocations in synthetic chemically vapor deposited diamond single crystals. Cryst Growth Des. 2016;16(5):2741–2746.  [Crossref] [Web of Science ®], [Google Scholar]
  • Tanaka K, Ohmagari S, Tachiki M, et al. Characterization of mosaic diamond wafers and hot-filament epilayers by using HR-EBSD technics. Diam Relat Mater. 2022;123:108839.  [Crossref] [Web of Science ®], [Google Scholar]
  • Kobayashi A, Ohmagari S, Umezawa H, et al. Suppression of killer defects in diamond vertical-type Schottky barrier diodes. Jpn J Appl Phys. 2020;59(SG):SGGD10.  [Crossref], [Google Scholar]
  • Sittimart P, Ohmagari S, Yoshitake T. Enhanced in-plane uniformity and breakdown strength of diamond Schottky barrier diodes fabricated on heteroepitaxial substrates. Jpn J Appl Phys. 2021;60(SB):SBBD05.  [Crossref] [Web of Science ®], [Google Scholar]
  • Ohmagari S, Yamada H, Tsubouchi N, et al. Schottky barrier diodes fabricated on diamond mosaic wafers: dislocation reduction to mitigate the effect of coalescence boundaries. Appl Phys Lett. 2019;114:082104.  [Crossref] [Web of Science ®], [Google Scholar]
  • Hanada T, Ohmagari S, Kaneko JH, et al. High yield uniformity in pseudo-vertical diamond schottky barrier diodes fabricated on half-inch single-crystal wafers. Appl Phys Lett. 2020;117(26):262107.  [Crossref] [Web of Science ®], [Google Scholar]
  • Shimaoka T, Ichikawa K, Koizumi S, et al. Detection of defects in diamond by etch‐pit formation. Phys Stat Sol A. 2019;216(21):1900247.  [Crossref] [Web of Science ®], [Google Scholar]
  • Teraji T, Fiori A, Kiritani N, et al. Mechanism of reverse current increase of vertical-type diamond schottky diodes. J Appl Phys. 2017;122(13):135304.  [Crossref] [Web of Science ®], [Google Scholar]
  • Kumaresan R, Umezawa H, Shikata S. Vertical structure Schottky barrier diode fabrication using insulating diamond substrate. Diam Relat Mater. 2010;19(10):1324–1329.  [Crossref] [Web of Science ®], [Google Scholar]