A wide ultraviolet spectra response photodetector based on epitaxial growth of highly-oriented ε-Ga2O3 crystal on diamond substrate
Keywords
Diamond; ε-Ga2O3; epitaxial growth; deep ultraviolet photodetector; wide spectra response
References
-
Xie C, Lu X-T, Tong X-W, et al. Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv Funct Mater. 2019;29:1. [Web of Science ®], [Google Scholar]
-
Qin Y, Long SB, Dong H, et al. Review of deep ultraviolet photodetector based on gallium oxide. Chinese Phys B. 2019;28(1):018501. [Crossref] [Web of Science ®], [Google Scholar]
-
Lu YJ, Lin CN, Shan CX. Optoelectronic diamond: growth, properties, and photodetection applications. Adv Optical Mater. 2018;6(20):1800359. [Crossref] [Web of Science ®], [Google Scholar]
-
Varshney U, Aggarwal N, Gupta G. Current advances in solar-blind photodetection technology: using Ga2O3 and AlGaN. J Mater Chem C. 2022;10(5):1573–8. [Crossref] [Web of Science ®], [Google Scholar]
-
Cai Q, You HF, Guo H, et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci Appl. 2021;10:94. [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
-
Hu X, Li XY, Li GY, et al. Recent progress of methods to enhance photovoltaic effect for self-powered heterojunction photodetectors and their applications in inorganic low-dimensional structures. Adv Funct Mater. 2021;31:2011284. [Crossref] [Web of Science ®], [Google Scholar]
-
Liu Z, Zhao D, Zhu T, et al. Enhanced responsivity of diamond UV detector based on regrown lens structure. IEEE Electron Device Lett. 2020;41(12):1829–1832. [Crossref] [Web of Science ®], [Google Scholar]
-
Lin CN, Lu YJ, Yang X, et al. Diamond-based all-carbon photodetectors for solar-blind imaging. Adv Optical Mater. 2018;6:1800068. [Crossref] [Web of Science ®], [Google Scholar]
-
Guo D, Guo Q, Chen Z, et al. Review of Ga2O3-based optoelectronic devices. Mater Today Phys. 2019;11:100157. [Crossref] [Web of Science ®], [Google Scholar]
-
Chen X, Ren F, Gu S, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photon. Res. 2019;7(4):381. [Crossref], [Google Scholar]
-
Hassanien AM, Atta AA, El-Nahass MM, et al. Effect of annealing temperature on structural and optical properties of gallium oxide thin films deposited by RF-sputtering. Opt Quantum Electron. 2020;52:194. [Crossref] [Web of Science ®], [Google Scholar]
-
Onuma T, Saito S, Sasaki K, et al. Spectroscopic ellipsometry studies on β-Ga2O3 films and single crystal. Jpn. J. Appl. Phys. 2016;55(12):1202B2. [Crossref] [Web of Science ®], [Google Scholar]
-
Qin Y, Li L, Zhao X, et al. Metal–semiconductor–metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics. 2020;7(3):812–820. [Crossref] [Web of Science ®], [Google Scholar]
-
Zhang C, Liu KW, Ai Q, et al. High-performance fully transparent Ga2O3 Solar-Blind UV photodetector with embedded Indium-tin-oxide electrodes. Mater Today Phys. 2023;33:102034. [Web of Science ®], [Google Scholar]
-
Alwadai N, Alharbi Z, Alreshidi F, et al. Enhanced photoresponsivity UV-C photodetectors using a p-n junction based on ultra-wide-band gap Sn-doped beta-Ga2O3 microflake/MnO quantum dots. ACS Appl. Mater. Interfaces. 2023;15(9):12127–12136. [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
-
Kim H, Tarelkin S, Polyakov A, et al. Ultrawide-bandgap p-n heterojunction of diamond/β-Ga2O3 for a solar-blind photodiode. ECS J Solid State Sci Technol. 2020;9(4):045004. [Crossref] [Web of Science ®], [Google Scholar]
-
Chen Y-C, Lu Y-J, Lin C-N, et al. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J Mater Chem C. 2018;6(21):5727–5732. [Crossref] [Web of Science ®], [Google Scholar]
-
Mezzadri F, Calestani G, Boschi F, et al. Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire. Inorg Chem. 2016;55(22):12079–12084. [Crossref] [PubMed] [Web of Science ®], [Google Scholar]
-
Wang J, Guo H, Zhu C-Z, et al. ε-Ga2O3: a promising candidate for high-electron-mobility transistors. IEEE Electron Device Lett. 2020;41:1052–1055. [Web of Science ®], [Google Scholar]
-
Cora I, Mezzadri F, Boschi F, et al. The real structure of ε-Ga2O3 and its relation to κ-phase. CrystEngComm. 2017;19(11):1509–1516. [Crossref] [Web of Science ®], [Google Scholar]
-
Boschi F, Bosi M, Berzina T, et al. Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD. J Cryst Growth. 2016;443:25–30. [Crossref] [Web of Science ®], [Google Scholar]
-
Nikolaev VI, Stepanov SI, Pechnikov AI, et al. HVPE growth and characterization of ε-Ga2O3 films on various substrates. ECS J Solid State Sci Technol. 2020;9(4):045014. [Crossref] [Web of Science ®], [Google Scholar]
-
Nishinaka H, Tahara D, Yoshimoto M. Heteroepitaxial growth of ε-Ga2O3 thin films on cubic (111) MgO and (111) Yttria-stablized zirconia substrates by mist chemical vapor deposition. Jpn J Appl Phys. 2016;55(12):1202BC. [Crossref] [Web of Science ®], [Google Scholar]
-
Wang W, Yuan Q, Han D, et al. High-temperature deep ultraviolet photodetector based on a crystalline Ga2O3-diamond heterostructure. IEEE Electron Device Lett. 2022;43(12):2121–2124. [Crossref] [Web of Science ®], [Google Scholar]
-
Karim MR, Chen Z, Feng Z, et al. Two-step growth of β-Ga2O3 films on (100) diamond via low pressure chemical vapor deposition. J Vac Sci Technol A. 2021;39:023411. [Crossref] [Web of Science ®], [Google Scholar]
-
Cui JF, Sun Y, Chen HX, et al. Atomic insights of self-healing in silicon nanowires. Adv. Funct. Mater. 2022;33:2210053. [Crossref] [Web of Science ®], [Google Scholar]
-
Mukhopadhyay P, Hatipoglu I, Frodason YK, et al. Role of defects in ultra-high gain in fast planar tin gallium oxide UV-C photodetector by MBE. Appl Phys Lett. 2022;121:111105. [Crossref] [Web of Science ®], [Google Scholar]
-
Li Z, Cheng Y, Xu Y, et al. High-performance β-Ga2O3 solar-blind schottky barrier photodiode with record detectivity and ultrahigh gain via carrier multiplication process. IEEE Electron Device Lett. 2020;41(12):1794–1797. [Crossref] [Web of Science ®], [Google Scholar]