Skip to main content
Review Article

The polishing methods for large area CVD diamond wafer

Haochen Zhang ,
Zengyu Yan ,
Zhipeng Song ,
Shuai Zhou ,
Zilong Zhang ,
Guo Chen ,
Meiyong Liao ,
Guangchao Chen
Volume 3, Issue 1 (2023)
DOI: 10.1080/26941112.2023.2246495


AbstractThe mainstream polishing methods were reviewed in light of polycrystalline CVD diamond wafer with large area. The principles, equipment, and processes of the mainstream polishing methods were reviewed, and the processing characteristics of these methods were compared. The material removal rate (MRR), polishing rate (PR), and minimum surface roughness (Ra) obtained by each polishing method were summed up. The non-contact method has a relatively higher MRR than the contact method, while the contact method has a relatively smaller final roughness than the non-contact method. Two factors, K (K = ΔRa/Δm, ΔRa is the reduction of the surface roughness, Δm is the mass loss) and CI (CI = K/t, t is the total polishing time), were proposed to evaluate the influence of the polishing parameters on the polishing course in the contact polishing methods and to describe the feature of each polishing method, respectively. The variation of the K value indicated that the polishing load and the polishing plate speed did not always influence the polishing effect monotonically in every contact polishing method, and it should be optimized to obtain fine surface roughness with the tiny mass loss. The CI value showed that the non-contact polishing method possessed the feature of high roughness improvement with low mass loss in the unit polishing time. These results reveal how to move forward on the path to polishing large area polycrystalline CVD diamond wafer.


CVD diamond; polycrystalline wafer; polishing; surface roughness; mass loss


  • Chae K-W, Baik Y-J, Park J-K, et al. The 8-inch free-standing CVD diamond wafer fabricated by DC-PACVD. Diamond Relat Mater. 2010;19(10):1–14. [Crossref], [Google Scholar]
  • Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017;7(1):44462. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Zhu X, Shao S, Chan S, et al. High performance of normally‐on and normally‐off devices with highly boron‐doped source and drain on H‐terminated polycrystalline diamond. Adv Elect Materials. 2023;9(3):2201122. [Crossref], [Google Scholar]
  • Chernykh MY, Andreev AA, Ezubchenko IS, et al. GaN-based heterostructures with CVD diamond heat sinks: a new fabrication approach towards efficient electronic devices. Appl Mater Today. 2022;26:101338. [Crossref], [Web of Science ®], [Google Scholar]
  • Buijnsters JG, Tsigkourakos M, Hantschel T, et al. Effect of boron doping on the wear behavior of the growth and nucleation surfaces of micro- and nanocrystalline diamond films. ACS Appl Mater Interfaces. 2016;8(39):26381–26391. [Crossref], [PubMed], [Google Scholar]
  • Alcantar-Pena JJ, de Obaldia E, Tirado P, et al. Polycrystalline diamond films with tailored micro/nanostructure/doping for new large area film-based diamond electronics. Diamond Relat Mater. 2019;91:261–271. [Crossref], [Google Scholar]
  • Francis D, Kuball M. 14 - GaN-on-diamond materials and device technology: a review. In: Tadjer MJ, Anderson TJ, editors. Thermal management of gallium nitride electronics. Cambridge, England: Woodhead Publishing; 2022. p. 295–331. [Crossref], [Google Scholar]
  • Imanishi S, Horikawa K, Oi N, et al. 3.8W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity. IEEE Electron Device Lett. 2019;40(2):279–282. [Crossref], [Web of Science ®], [Google Scholar]
  • Yunata EE, Aizawa T, Tamaoki K, et al. Plasma polishing and finishing of CVD-diamond coated WC (Co) dies for dry stamping. International Conference on the Technology of Plasticity (ICTP), Cambridge, England, 2017, pp. 2197–2202. [Crossref], [Google Scholar]
  • Hicks ML, Pakpour-Tabrizi AC, Jackman RB. Polishing, preparation and patterning of diamond for device applications. Diamond Relat Mater. 2019;97:107424. [Crossref], [Google Scholar]
  • Wang HC, Jin ZJ, Li XH, et al. Insight into the graphitization mechanism of the interface between iron and diamond: a DFT study. Diamond Relat Mater. 2022;127:109213. [Crossref], [Google Scholar]
  • Shubin WB, Yujing SJ, Shi T. Surface graphitization analysis of cerium-polished HFCVD diamond films with micro-raman spectra. J Rare Earths. 2008;26(3):362–366. [Crossref], [Google Scholar]
  • Yan XB, Wei JJ, An K, et al. High temperature surface graphitization of CVD diamond films and analysis of the kinetics mechanism. Diamond Relat Mater. 2021;120:108647. [Crossref], [Google Scholar]
  • Lee CK. Effects of hydrogen and oxygen on the electrochemical corrosion and wear-corrosion behavior of diamond films deposited by hot filament chemical vapor deposition. Appl Surf Sci. 2008;254(13):4111–4117. [Crossref], [Google Scholar]
  • Shi Z, Jin Z, Guo X, et al. Insights into the atomistic behavior in diamond chemical mechanical polishing with OH environment using ReaxFF molecular dynamics simulation. Comput Mater Sci. 2019;166:136–142. [Crossref], [Google Scholar]
  • Kubota A, Nagae S, Touge M. Improvement of material removal rate of single-crystal diamond by polishing using H2O2 solution. Diamond Relat Mater. 2016;70:39–45. [Crossref], [Google Scholar]
  • Chen Y, Nguyen T, Zhang LC. Polishing of polycrystalline diamond by the technique of dynamic friction-Part 5: quantitative analysis of material removal. Int J Machine Tools & Manufacture. 2009;49(6):515–520. [Crossref], [Google Scholar]
  • Le X, Peterson ML. Material removal rate in flat lapping. J Manuf Syst. 1999;18(2):71–78. [Crossref], [Google Scholar]
  • Zhou L, Huang ST, Xu LF. An efficient super-high speed polishing method for CVD diamond films. Int J Re­fractory Metals & Hard Mater. 2011;29(6):698–704. [Crossref], [Google Scholar]
  • Ralchenko VG, Ashkinazi EE, Zavedeev EV, et al. High-rate ultrasonic polishing of polycrystalline diamond films. Diamond Relat Mater. 2016;66:171–176. [Crossref], [Google Scholar]
  • Kubota A, Nagae S, Motoyama S. High-precision mechanical polishing method for diamond substrate using micron-sized diamond abrasive grains. Diamond Relat Mater. 2020;101:107644. [Crossref], [Google Scholar]
  • Yang H, Jin Z, Niu H, et al. A novel visible-light catalyzed assisted single crystal diamond chemical mechanical polishing slurry and polishing mechanism. Mater Today Commun. 2022;33:104249. [Crossref], [Google Scholar]
  • Sun Y, Wang S, Tian S, et al. Polishing of diamond thick films by Ce at lower temperatures. Diamond Relat Mater. 2006;15(9):1412–1417. [Crossref], [Google Scholar]
  • Johnson CE. Chemical polishing of diamond. Surf Coat Technol. 1994;68-69/(69):374–377. [Crossref], [Google Scholar]
  • Liu N, Sugawara K, Yoshitaka N, et al. Damage-free highly efficient plasma-assisted polishing of a 20-mm square large mosaic single crystal diamond substrate. Sci Rep. 2020;10(1):19432. [Crossref], [PubMed], [Google Scholar]
  • Yamamura K, Emori K, Sun R, et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing. CIRP Ann. 2018;67(1):353–356. [Crossref], [Google Scholar]
  • Yang HP, Jin ZJ, Niu L, et al. Visible-light catalyzed assisted chemical mechanical polishing of single crystal diamond. Diamond Relat Mater. 2022;125:108982. [Crossref], [Google Scholar]
  • Xiao C, Hsia F-C, Sutton-Cook A, et al. Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs: a review of mechanisms and processes. Carbon. 2022;196:29–48. [Crossref], [Web of Science ®], [Google Scholar]
  • Schuelke T, Grotjohn TA. Diamond polishing. Diamond Relat Mater. 2013;32:17–26. [Crossref], [Web of Science ®], [Google Scholar]
  • Xu H, Zang J, Tian P, et al. Surface conversion reaction and high efficient grinding of CVD diamond films by chemically mechanical polishing. Ceram Int. 2018;44(17):21641–21647. [Crossref], [Google Scholar]
  • Thomas ELH, Nelson GW, Mandal S, et al. Chemical mechanical polishing of thin film diamond. Carbon. 2014;68:473–479. [Crossref], [Web of Science ®], [Google Scholar]
  • Li J, Wang S, Sun Y, et al. Diamond films by CVD and high rate polishing at low temperature with partially molten Ce-Fe alloy. Rare Metal Mater Engin. 2007;36(5):933–936. [Google Scholar]
  • Zaitsev AM, Kosaca G, Richarz B, et al. Thermochemical polishing of CVD diamond films. Diamond Relat Mater. 1998;7(8):1108–1117. [Crossref], [Web of Science ®], [Google Scholar]
  • Nguyen VT, Fang TH. Phase transformation and subsurface damage formation in the ultrafine machining process of a diamond substrate through atomistic simulation. Sci Rep. 2021;11(1):17795. [Crossref], [PubMed], [Google Scholar]
  • Zhang M, Xu H. Controllability and mechanism investigation on the subsurface damage of CVD diamond film by Fe-containing vitrified bond wheel. Tribol Int. 2021;155:106774. [Crossref], [Google Scholar]
  • Zheng YT, Ye HT, Thornton R, et al. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing. Diamond Relat Mater. 2020;101:107600. [Crossref], [Web of Science ®], [Google Scholar]
  • Kononenko TV, Pivovarov PA, Khomich AA, et al. Processing of polycrystalline diamond surface by IR laser pulses without interior damage. Optics and Laser Technol. 2019;117:87–93. [Crossref], [Google Scholar]
  • Chen Y, Zhang LC. Polishing of polycrystalline diamond by the technique of dynamic friction, part 4: establishing the polishing map. Int J Machine Tools & Manufacture. 2009;49(3–4):309–314. [Crossref], [Google Scholar]
  • Xu HQ, Zang JB, Yang GP, et al. High-efficiency grinding CVD diamond films by Fe-Ce containing corundum grinding wheels. Diamond Relat Mater. 2017;80:5–13. [Crossref], [Google Scholar]
  • Hocheng H, Chen CC. Chemical-assisted mechanical polishing of diamond film on wafer. In: Jywe W, Chen CL, Fan KC, et al., editors. Progress on advanced manufacture for micro/nano technology 2005, Pt 1 and 2. Stafa, Switzerland: Trans Tech Publications Ltd, 2006. pp. 1225–1230. [Google Scholar]
  • Yuan Z, Jin Z, Zhang Y, et al. Chemical mechanical polishing slurries for chemically vapor-deposited diamond films. J Manuf Sci Eng. 2013;135(4):041006. [Crossref], [Google Scholar]
  • Feng HB, Chen YQ, Zhang LC. Polishing of CVD diamond wafers and films. International Conference on Materials Science and Nanotechnology (ICMSN 2012), Guangzhou, PEOPLES R CHINA, 2012, pp. 373–376. [Crossref], [Google Scholar]
  • Wang CY, Zhang FL, Kuang TC, et al. Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3. Thin Solid Films. 2006;496(2):698–702. [Crossref], [Web of Science ®], [Google Scholar]
  • Sharonov GV, Petrov SA. Superfinishing polish of diamond substrates for epitaxial technology. J Eng Phys Thermophy. 2011;84(5):1188–1191. [Crossref], [Google Scholar]
  • Xiu LF, Chengming L. Thirty years of chemical vapor deposition (CVD) diamond films research in China. J Synthetic Crystals. 2022;51(5):753–758. [Google Scholar]
  • Li B, Han B, Lu XY, et al. IR transmittance of large-sized free-standing transparent diamond films prepared by MWPCVD. New Carbon Mater. 2008;23(3):245–249. [Crossref], [Google Scholar]
  • Mao YM, Gao J, Zheng K, et al. Optimization for solderability of large-size single-crystal diamond with heterogeneity alloys by tantalum coating. Surface & Coatings Technol. 2022;437:128382. [Crossref], [Google Scholar]
  • Chen G, Liu H, Li J, et al. Preparation method of CVD diamond and novel ideas for increasing growth rate. JES. 2017;09(06):538–546. [Crossref], [Google Scholar]
  • Huang XR, Zhou CJ, Wu B, et al. Wafer-scale polishing of polycrystalline MPACVD-diamond. Surfaces. 2022;5(1):155–164. [Crossref], [Google Scholar]
  • Liu N, Sugimoto K, Yoshitaka N, et al. Highly efficient finishing of large-sized single crystal diamond substrates by combining nanosecond pulsed laser trimming and plasma-assisted polishing. Ceram Int. 2023;49(11):19109–19123. [Crossref], [Google Scholar]
  • Kubota A, Nagae S, Motoyama S, et al. Two-step polishing technique for single crystal diamond (100) substrate utilizing a chemical reaction with iron plate. Diamond Relat Mater. 2015;60:75–80. [Crossref], [Google Scholar]
  • Wen H, Lu J, Li C, et al. Research on integrated processing of grinding and polishing for large-size single crystal diamond. J Synthetic Crystals. 2022;51(05):941–947. [Google Scholar]
  • Liao MY, Shen B, Wang ZG. Ultra-wide bandgap semiconductor materials. Amsterdam, Netherlands: Elsevier; 2019. [Google Scholar]
  • Zong WJ, Li D, Cheng K, et al. The material removal mechanism in mechanical lapping of diamond cutting tools. Int J Machine Tools & Manufacture. 2005;45(7-8):783–788. [Crossref], [Google Scholar]
  • Ollison CD, Brown WD, Malshe AP, et al. A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond. Diamond Relat Mater. 1999;8(6):1083–1090. [Crossref], [Web of Science ®], [Google Scholar]
  • Tang CJ, Neves AJ, Fernandes AJS, et al. A new elegant technique for polishing CVD diamond films. Diamond Relat Mater. 2003;12(8):1411–1416. [Crossref], [Google Scholar]
  • Xu HQ, Zang JB, Tian PF, et al. Rapid grinding CVD diamond films using corundum grinding wheels containing iron. Int J Refractory Metals & Hard Materials. 2018;71:147–152. [Crossref], [Google Scholar]
  • Tsai HY, Ting CJ, Chou CP. Evaluation research of polishing methods for large area diamond films produced by chemical vapor deposition. Diamond Relat Mater. 2007;16(2):253–261. [Crossref], [Google Scholar]
  • Izak T, Kromka A, Babchenko O, et al. Comparative study on dry etching of polycrystalline diamond thin films. Vacuum. 2012;86(6):799–802. [Crossref], [Google Scholar]
  • Zheng YT, Ye HT, Liu JL, et al. Surface morphology evolution of a polycrystalline diamond by inductively coupled plasma reactive ion etching (ICP-RIE). Mater Lett. 2019;253:276–280. [Crossref], [Web of Science ®], [Google Scholar]
  • Fu Y, Lu F, Wang J, et al. Polishing of thick free standing films by rare earth metals. Chinese High Technology Letters. 1996;(1):1–5. [Google Scholar]
  • Tang FZ, Chen YQ, Zhang LC. Analysis of polished polycrystalline diamond using dual beam focused ion beam microscopy. Philos Mag. 2012;92(13):1680–1690. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Ozkan AM, Malshe AP, Brown WD. Sequential multiple-laser-assisted polishing of free-standing CVD diamond substrates. Diamond Relat Mater. 1997;6(12):1789–1798. [Crossref], [Web of Science ®], [Google Scholar]
  • Leech PW, Reeves GK, Holland AS, et al. Ion beam etching of CVD diamond film in Ar, Ar/O-2 and Ar/CF4 gas mixtures. Diamond Relat Mater. 2002;11(3-6):833–836. [Crossref], [Web of Science ®], [Google Scholar]
  • Wu J, Ma Z-B, Shen W-L, et al. Influence of nitrogen in diamond films on plasma etching. Acta Phys Sin. 2013;62(7):075202. [Crossref], [Google Scholar]
  • Weima JA, Fahrner WR, Zaitsev AM, et al. Surface characterization of thermochemically polished CVD diamond films. 3rd International Micro Materials Con­ference, Berlin, Germany, 2000, pp. 880–883. [Google Scholar]
  • Liang YF, Zheng YT, Wei JJ, et al. Effect of grain boundary on polycrystalline diamond polishing by high-speed dynamic friction. Diamond Relat Mater. 2021;117:108461. [Crossref], [Google Scholar]
  • Ogawa Y, Ota M, Nakamoto K, et al. A study on machining of binder-less polycrystalline diamond by femtosecond pulsed laser for fabrication of micro milling tools. Cirp Annals-Manufacturing Technol. 2016;65(1):245–248. [Crossref], [Google Scholar]
  • Yoshida A, Deguchi M, Kitabatake M, et al. Atomic level smoothing of CVD diamond films by gas cluster ion beam etching, nuclear. Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms. 1996;112(1-4):248–251. [Google Scholar]
  • Mallik AK, Bhar R, Bysakh S. An effort in planarising microwave plasma CVD grown polycrystalline diamond (PCD) coated 4 in. Si wafers. Mater Sci Semicond Process. 2016;43:1–7. [Crossref], [Google Scholar]
  • Zheng XF, Ma ZB, Zhang L, et al. Investigation on the etching of thick diamond film and etching asa pretreatment for mechanical polishing. Diamond Relat Mater. 2007;16(8):1500–1509. [Crossref], [Google Scholar]
  • Sun Y, Wang S, Tian S, et al. A low-temperature polishing technique for CVD diamond films by Ce-Mn alloys. Rare Metal Mater Engin. 2007;36:892–895. [Google Scholar]
  • Gogotsi Y, Baek C, Kirscht F. Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon. Semicond Sci Technol. 1999;14(10):936–944. [Crossref], [Web of Science ®], [Google Scholar]
  • Pei ZJ, Fisher GR, Liu J. Grinding of silicon wafers: a review from historical perspectives. Int J Machine Tools & Manufacture. 2008;48(12–13):1297–1307. [Crossref], [Web of Science ®], [Google Scholar]
  • Ali B, Litvinyuk IV, Rybachuk M. Femtosecond laser micromachining of diamond: current research status, applications and challenges. Carbon. 2021;179:209–226. [Crossref], [Google Scholar]
  • Wei C, Ma YP, Han Y, et al. Study on femtosecond laser processing characteristics of nano-crystalline CVD diamond coating. Appl Sci-Basel. 2019;9(20):4273. [Crossref], [Google Scholar]
  • Yan B, Chen N, He N, et al. Surface modeling and component analysis of picosecond laser ablation of CVD diamond. Diamond Relat Mater. 2021;111:108191. [Crossref], [Google Scholar]
  • Toros A, Kiss M, Graziosi T, et al. Reactive ion etching of single crystal diamond by inductively coupled plasma: state of the art and catalog of recipes. Diamond Relat Mater. 2020;108:107839. [Crossref], [Google Scholar]
  • Yuan Z, Jin Z, Wang K, et al. High-productivity ultraprecise polishing technique of CVD diamond film. Nanotechnol Precis Eng. 2011;9(5):451–458. [Google Scholar]
  • Huang ST, Zhou L, Xu LF, et al. A super-high speed polishing technique for CVD diamond films. Diamond Relat Mater. 2010;19(10):1316–1323. [Crossref], [Google Scholar]
  • Roy S, Balla VK, Mallik A, et al. A comprehensive study of mechanical and chemo-mechanical polishing of CVD diamond. International Conference on Functional Nanomaterials (IC-FNM), Howrah, India, 2016, pp. 9846–9854. [Google Scholar]
  • Wang J, Wang J. Mechanical lapping thick CVD diamond films. J Wuhan Institute of Technol. 2005;27(5):39–41. [Google Scholar]
  • Cheng CY, Tsai HY, Wu CH, et al. An oxidation enhanced mechanical polishing technique for CVD diamond films. Diamond Relat Mater. 2005;14(3–7):622–625. [Crossref], [Google Scholar]
  • Kuhnle J, Weis O. Mechanochemical superpolishing of diamond using NaNO3 or KNO3 as oxidizing agents. Surf Sci. 1995;340(1–2):16–22. [Crossref], [Google Scholar]
  • Weima JA, Zaitsev AM, Job R, et al. Investigation of non-diamond carbon phases and optical centers in thermochemically polished polycrystalline CVD diamond films. J Solid State Electrochem. 2000;4(8):425–434. [Crossref], [Google Scholar]
  • Zhang H, Xu K, Yan Z, et al. Study on dynamic friction polishing of single crystal diamond. J Univ Chinese Acad Sci. 2023:78. [Google Scholar]
  • Chen Y, Zhang LC, Arsecularatne JA. Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: material removal mechanism. Int J Mach Tools Manuf. 2007;47(10):1615–1624. [Crossref], [Web of Science ®], [Google Scholar]
  • Gloor S, Luthy W, Weber HP, et al. UV laser polishing of thick diamond films for IR windows. Appl Surf Sci. 1999;138–139:135–139. [Crossref], [Google Scholar]
  • Chen C, Tsai H-L. Fundamental study of the bulge structure generated in laser polishing process. Opt Lasers Eng. 2018;107:54–61. [Crossref], [Web of Science ®], [Google Scholar]
  • Prieske M, Vollertsen F. Picosecond-laser polishing of CVD-diamond coatings without graphite formation. Mater Today: Proc. 2021;40:1–4. [Crossref], [Google Scholar]
  • Grogan DF, Zhao T, Bovard BG, et al. Planarizing technique for ion-beam polishing of diamond films. Appl Opt. 1992;31(10):1483–1487. [Crossref], [PubMed], [Google Scholar]
  • Hirata A, Tokura H, Yoshikawa M. Smoothing of chemically vapour deposited diamond films by ion beam irradiation. Thin Solid Films. 1992;212(1–2):43–48. [Crossref], [Google Scholar]
  • Ilias S, Sene G, Moller P, et al. Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle. Diamond Relat Mater. 1996;5(6–8):835–839. [Crossref], [Google Scholar]
  • Sirineni GMR, Naseem HA, Malshe AP, et al. Reactive ion etching of diamond as a means of enhancing chemically-assisted mechanical polishing efficiency. Diamond Relat Mater. 1997;6(8):952–958. [Crossref], [Google Scholar]
  • Zhou L, Huang ST, Wang XL, et al. High-speed mechanical lapping of CVD diamond films using diamond wheel. Int J Refractory Metals & Hard Mater. 2012;35:185–190. [Crossref], [Google Scholar]
  • Wang R, Chen N, Yan B, et al. Inert ambiance-assisted laser ablation of CVD diamond leads to enhanced surface quality and grindability. Ceram Int. 2023;49(1):1154–1164. [Crossref], [Google Scholar]

Related articles