Skip to main content

Insights on self-assembly of carbon in the processes of thermal transformations under high pressures

V. A. Davydov ,
V. N. Agafonov ,
T. Plakhotnik ,
V. N. Khabashesku
Volume 3, Issue 1 (2023)
DOI: 10.1080/26941112.2023.2193212

Abstract

Peculiarities of the processes of self-assembly of carbon under pressure up to 8 GPa and temperatures up to 1600°C in pure carbon, hydrocarbon, fluorocarbon, organometallic systems and binary mixtures of all-carbon, hydrocarbon, and fluorocarbon compounds have been revealed in the course of studies of pressure and temperature-induced transformations of different carbon-containing systems. It was shown that the character of the processes of self-assembly of carbon in different systems is controlled in the first place by the mobility of carbon atoms. The low diffusion mobility of carbon atoms in a condensed state at temperatures below 2000° C leads to the fact that in pure carbon systems studied on the examples of fullerite C60 and closed polyhedral carbon nanoparticles, carbon self-organization can occur only due to processes associated with small movements of carbon atoms that ensure the formation of intermolecular bonds in cases of polymerization of C60 or the restructuring of the internal structure of a polyhedral particle, strictly limited to the confines of a single nanoparticle. In the hydrocarbon and fluorocarbon systems, the character of transformation changes drastically due to formation of volatile low-molecular hydrocarbon and fluorocarbon fractions, which ensure a high gas-phase or fluid mobility to carbon atoms. Studies of pressure and temperature-induced transformations of different hydrocarbon, fluorocarbon compounds and their homogeneous binary mixtures revealed a clear synergistic effect of fluorine and hydrogen on processes of carbonization, graphitization, and formation of diamond in these systems in relation to industrially significant reduction of p,T parameters for formation of graphite, diamond and increase in the content of nanosize diamond fractions in the products of transformations of binary mixtures in comparison with pure hydrocarbon and fluorocarbon compounds. Discovery of this synergistic effect opens new opportunities for synthesis of high-purity and doped ultranano-, nano-, submicro-, and micronsized diamonds with the specific properties for different applications in quantum physics and biomedicine. Studies of particularities of self-assembly of carbon in processes of thermal transformations of ferrocene at high pressures demonstrated the possibility of preparation of iron carbide nanoparticles encapsulated into carbon shells, Fe7C3@C and Fe3C@C, considered as perspective magneto-controlled platforms for different biomedical nanocomplexes.

Keywords

Carbon-containing systems; pressure-temperature induced transformation

References

  • Kroto HW, Heath JR, O’Brien SC, et al. C60: buckminsterfullerene. Nature. 1985;318(6042):1–20.
  • Krätschmer W, Lamb LD, Fostiropoulos K, et al. Solid C60: a new form of carbon. Nature. 1990;347(6291):354–358.
  • Howard JB, McKinnon JT, Makarovsky Y, et al. Fullerenes C60 and C70 in flames. Nature. 1991;352(6331):139–141.
  • Lieber CM, Chen CC. Preparation of fullerenes and fullerene-based materials. In: Ehrenreich H, Spaepen F, editors. Solid state phys. Cambridge (MA): Academic Press; 1994. p. 109–148.
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58.
  • Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation. Nature. 1992;359(6397):707–709.
  • Gogotsi Y, Libera JA, Kalashnikov N, et al. Graphite polyhedral crystals. Science. 2000;290(5490):317–320.
  • Ge M, Sattler K. Observation of fullerene cones. Chem Phys Lett. 1994;220(3–5):192–196.
  • Fitzer E, Mueller K, Schaefer W. The chemistry of the pyrolytic conversion of organic compounds to carbon. Chem Phys Carbon. 1971;7(1):237–383.
  • Fishbach D. The kinetics and mechanism of graphitization. Chem Phys Carbon. 1971;7:1–106.
  • Davydov VA, Rakhmanina AV, Agafonov V, et al. Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures. Carbon. 2004;42(2):261–269.
  • Melikhov IV. Physico-Chemical evolution of solid state. Moscow: BINOM. Laboratory of Knowledge; 2006.
  • Jiang Q, Chen ZP. Thermodynamic phase stabilities of nanocarbon. Carbon. 2006;44(1):79–83.
  • Vander Wal RL, Tomasek AJ, Street K, et al. Carbon nanostructure examined by lattice fringe analysis of high-resolution transmission electron microscopy images. Appl Spectrosc. 2004;58(2):230–237.
  • Khvostantsev LG, Vereshchagin LF, Novikov AP. Device of toroid type for high pressure generation. High Temp- High Pressures. 1977;9:637–639.
  • Tonkov EY, Ponyatovsky EG. Phase transformations of elements Under high pressure. London: CRC Press; 2004.
  • Bundy FP. Direct conversion of graphite to diamond in static pressure apparatus. Science. 1962;137(3535):1057–1058.
  • Digonsky VV, Digonsky SV. Patterns of diamond formation. St. Petersburg: “Nedra” Publishing House; 1992.
  • Terrones M, Terrones H. The carbon nanocosmos: novel materials for the twenty-first century. Philos Trans A Math Phys Eng Sci. 2003;361(1813):2789–2806.
  • Vereshchagin LF, Ryabinin YN, Semerchan AA, et al. Direct conversion of graphite into diamond at high static pressures. Dokl Akad Nauk SSSR. 1972;206(1):78–79.
  • Wentorf RH. The behavior of some carbonaceous materials at very high pressures and high temperatures. J Phys Chem. 1965;69(9):3063–3069.
  • Dresselhaus MS, Dresselhaus G, Eklund PC. Science of fullerenes and carbon nanotubes. New York (NY): Academic Press; 1995.
  • David WIF, Ibberson RM, Matthewman JC, et al. Crystal structure and bonding of ordered C60. Nature. 1991;353(6340):147–149.
  • Heiney PA. Structure, dynamics and ordering transition of solid C60. J Phys Chem Solids. 1992;53(11):1333–1352.
  • Heimann RB, Evsvukov SE, Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon. 1997;35(10–11):1654–1658.
  • Burgos E, Halac E, Weht R, et al. New superhard phases for three-dimensional ${C}_{60}$-based fullerites. Phys Rev Lett. 2000;85(11):2328–2331.
  • Iwasa Y, Arima T, Fleming RM, et al. New phases of C-60 synthesized at high-pressure. Science. 1994;264(5165):1570–1572.
  • Núñez-Regueiro M, Marques L, Hodeau JL, et al. Polymerized fullerite structures. Phys Rev Lett. 1995;74(2):278–281.
  • Davydov VA, Kashevarova LS, Rakhmanina AV, et al. Spectroscopic study of pressure-polymerized phases of ${\mathrm{C}}_{60}$. Phys Rev B. 2000;61(18):11936–11945.
  • Tang H, Yuan X, Cheng Y, et al. Synthesis of paracrystalline diamond. Nature. 2021;599(7886):605–610.
  • Blank VD, Buga SG, Dubitsky GA, et al. High-pressure polymerized phases of C60. Carbon. 1998;36(4):319–343.
  • Brazhkin VV, Lyapin AG. Hard and superhard carbon phases synthesized from fullerites under pressure. J. Superhard Mater. 2012;34(6):400–423.
  • Sundqvist B. Carbon under pressure. Phys Rep. 2021;909:1–73.
  • Shang Y, Liu Z, Dong J, et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature. 2021;599(7886):599–604.
  • Chernozatonskii LA, Serebryanaya NR, Mavrin BN. The superhard crystalline three-dimensional polymerized C60 phase. Chem Phys Lett. 2000;316(3–4):199–204.
  • De Gennes PG. Scaling concepts in polymer physics. London: Ithaca; 1979.
  • Yakovlev EN, Voronov OA. The gibbs energy of fullerite C60 at pressures up to 20 GPa in the temperature range 300-1000 K. High Temper High Pressure. 1994;26:639–643.
  • Davydov VA, Shiryaev AA, Rakhmanina AV, et al. Transformations of polyhedral carbon nanoparticles under high pressures and temperatures. Carbon. 2011;49(7):2389–2401.
  • Banhart F, Ajayan PM. Carbon onions as nanoscopic pressure cells for diamond formation. Nature. 1996;382(6590):433–435.
  • Pierson HO. Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications. Park Ridge (NJ): Noyes Publications; 1993.
  • Oberlin A. High-resolution TEM study of carbonization and graphitization. In: Thrower A, editor. Chemistry and physics of carbon . New York (NY): Dekker M; 1989. p. 1–143.
  • Whang P, Dachille F, Walker P.Jr Pressure effects on the initial carbonization reactions of anthracene. High Temp-High Press. 1974;6(2):127–136.
  • Ayache J, Oberlin A, Inagaki M. Mechanism of carbonization under pressure, part I: influence of aromaticity (polyethylene and anthracene). Carbon. 1990;28(2–3):337–351.
  • Yakovlev E, Voronov O, Rakhmanina A. Diamond synthesis from hydrocarbons. Sverkhtverd Mater. 1984;59(4):8–11.
  • Onodera A, Suito K. Synthesis of diamond from carbonaceous materials. In: science and technology of high pressure. Hyderabad, India: Universities Press Hyderabad; 2000. p. 875–880.
  • Davydov VA, Rakhmanina AV, Boudou JP, et al. Nanosized carbon forms in the processes of pressure-temperature-induced transformations of hydrocarbons. Carbon. 2006;44(10):2015–2020.
  • Lambrecht WRL, Lee CH, Segall B, et al. Diamond nucleation by hydrogenation of the edges of graphitic precursors. Nature. 1993;364(6438):607–610.
  • Davydov VA, Rakhmanina AV, Agafonov VN, et al. Synergistic effect of fluorine and hydrogen on processes of graphite and diamond formation from Fluorographite-Naphthalene mixtures at high pressures. J Phys Chem C. 2011;115(43):21000–21008.
  • Davydov VA, Rakhmanina AV, Agafonov V, et al. On the nature of simultaneous formation of nano- and micron-size diamond fractions under pressure-temperature-induced transformations of binary mixtures of hydrocarbon and fluorocarbon compounds. Carbon. 2015;90:231–233.
  • Davydov VA, Agafonov V, Khabashesku VN. Comparative study of condensation routes for formation of nano- and microsized carbon forms in hydrocarbon, fluorocarbon, and Fluoro-Hydrocarbon systems at high pressures and temperatures. J Phys Chem C. 2016;120(51):29498–29509.
  • Ekimov E, Shiryaev AA, Grigoriev Y, et al. Size-Dependent thermal stability and optical properties of ultra-small nanodiamonds synthesized under high pressure. Nanomaterials. 2022;12(3):351.
  • Aharonovich I, Castelletto S, Simpson DA, et al. Diamond-based single-photon emitters. Rep. Prog. Phys. 2011;74(7):076501.
  • Arnault JC. Nanodiamonds: advanced material analysis, properties and applications. Amsterdam, the Netherlands: Elsevier; 2017.
  • Bradac C, Gao WB, Forneris J, et al. Quantum nanophotonics with group IV defects in diamond. Nat Commun. 2019;10(1):5625.
  • Alkahtani MH, Alghannam F, Jiang L, et al. Fluorescent Nanodiamonds: past, present, and future. Nanophotonics. 2018;7(8):1423–1453.
  • Shenderova OA, Shames AI, Nunn NA, et al. Review article: synthesis, properties, and applications of fluorescent diamond particles. J Vac Sci Technol B Nanotechnol Microelectron. 2019;37(3):030802.
  • Ekimov E, Kondrin M. High-pressure, high-temperature synthesis and doping of nanodiamonds. Diamond for quantum applications part 1. Semiconductors and semimetals. Amsterdam, the Netherlands: Elsevier Science; 2020. p. 161–199.
  • Fehler KG, Ovvyan AP, Antoniuk L, et al. Purcell-enhanced emission from individual SiV − center in nanodiamonds coupled to a Si3N4-based, photonic crystal cavity. Nanophotonics. 2020;9(11):3655–3662.
  • Nahra M, Alshamaa D, Deturche R, et al. Single germanium vacancy centers in nanodiamonds with bulk-like spectral stability. AVS Quantum Sci. 2021;3(1):012001.
  • Kumar S, Wu C, Komisar D, et al. Fluorescence enhancement of a single germanium vacancy center in a nanodiamond by a plasmonic bragg cavity. J Chem Phys. 2021;154(4):044303.
  • Waltrich R, Lubotzky B, Abudayyeh H, et al. High-purity single photons obtained with moderate-NA optics from SiV center in nanodiamonds on a bullseye antenna. New J Phys. 2021;23(11):113022.
  • Liu W, Alam MNA, Liu Y, et al. Silicon-Vacancy nanodiamonds as high performance Near-Infrared emitters for Live-Cell Dual-Color imaging and thermometry. Nano Lett. 2022;22(7):2881–2888.
  • Mindarava Y, Blinder R, Davydov VA, et al. Core-Shell" diamond nanoparticles with NV- Centers and a highly isotopically enriched C-13 shell as a promising hyperpolarization agent. J Phys Chem C. 2021;125:27647–27653.
  • Vlasov II, Shenderova O, Turner S, et al. Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small. 2010;6(5):687–694.
  • Mochalin VN, Shenderova O, Ho D, et al. The properties and applications of nanodiamonds. Nat Nanotech. 2012;7(1):11–23.
  • Vlasov II, Turner S, Van Tendeloo G, et al. Chapter 9 recent results on characterization of detonation nanodiamonds. In: Shenderova OA, GruenIn DM, editors. Ultananocrystalline diamond. Amsterdam, the Netherlands: Elsevier; 2012. p. 291–326.
  • Bergman L, Stoner BR, Turner KF, et al. Microphotoluminescence and Raman-Scattering study of defect formation in diamond films. J Appl Phys. 1993;73(8):3951–3957.
  • Turukhin AV, Liu C, Gorokhovsky AA, et al. Picosecond photoluminescence decay of si-doped chemical-vapor-deposited diamond films. Phys Rev B. 1996;54(23):16448–16451.
  • Musale D, Sainkar S, Kshirsagar S. Raman, photoluminescence and morphological studies of si-and N-doped diamond films grown on si (100) substrate by hot-filament chemical vapor deposition technique. Diam Relat Mater. 2002;11(1):75–86.
  • Balmer R, Brandon J, Clewes S, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications. J Phys Condens Matter. 2009;21:364221.
  • Grudinkin SA, Feoktistov NA, Medvedev AV, et al. Luminescent isolated diamond particles with controllably embedded silicon-vacancy colour centres. J Phys D Appl Phys. 2012;45(6):062001.
  • Bolshakov A, Ralchenko V, Sedov VS, et al. Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with si from silane. Phys Status Solidi A. 2015;212(11):2525–2532.
  • Vavilov VS, Gippius AA, Zaitsev BV, et al. Study of cathodoluminescence of epitaxial diamond films. Sov Phys Semicond. 1980;14:1078.
  • Tchernij SD, Luhmann T, Herzig T, et al. Single-photon emitters in lead-implanted single-crystal diamond. Acs Photonics. 2018;5(12):4864–4871.
  • Boudou JP, Tisler J, Reuter R, et al. Fluorescent nanodiamonds derived from HPHT with a size of less than 10 nm. Diam Relat Mater. 2013;37:80–86.
  • Neu E, Arend C, Gross E, et al. Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. Appl Phys Lett. 2011;98(24):243107–243107.
  • Sittas G, Kanda H, Kiflawi I, et al. Growth and characterization of si-doped diamond single crystals grown by the HTHP method. Diam Relat Mater. 1996;5(6–8):866–869.
  • Clark CD, Kanda H, Kiflawi I, et al. Silicon defects in diamond. Phys Rev B. 1995;51(23):16681–16688.
  • Nadolinny VA, Komarovskikh A, Palyanov YN, et al. EPR study of si‐ and ge‐related defects in HPHT diamonds synthesized from mg‐based solvent‐catalysts. Phys Status Solidi A. 2016;213(10):2623–2628.
  • Rogers L, Wang O, Liu Y, et al. Single SiV- centers in low-strain nanodiamonds with bulk-like spectral properties and nano-manipulation capabilities. Phys Rev Appl. 2018;11:024073.
  • Jantzen U, Kurz AB, Rudnicki DS, et al. Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths. New J Phys. 2016;18(7):073036.
  • Uskoković V. Earthicle and its discontents: a historical critical review of iron (oxide) particles singly and doubly shelled with silica and/or carbon. ACS Earth Space Chem. 2020;4(10):1843–1877.
  • Elihn K. Synthesis of carbon-covered iron nanoparticles by photolysis of ferrocene. Uppsala, Sweden: Uppsala Universitet; 2002.
  • Elihn K, Otten F, Boman M. Size distributions and synthesis of nanoparticles by photolytic dissociation of ferrocene. Appl Phys A. 2001;72(1):29–34.
  • Elihn K, Larsson K. A theoretical study of the thermal fragmentation of ferrocene. Thin Solid Films. 2004;458(1–2):325–329.
  • Elihn K, Landström L, Alm O, et al. Size and structure of nanoparticles formed via ultraviolet photolysis of ferrocene. J Appl Phys. 2007;101(3):034311–034311.
  • Bagramov RH, Blank VD, Serebryanaya NR, et al. High pressures synthesis of iron carbide nanoparticles covered with onion-like carbon shells. Fuller Nanotub Carbon Nanostruct. 2012;20(1):41–48.
  • Baskakov A, Lyubutin I, Starchikov S, et al. Mechanism of transformation of ferrocene into carbon-encapsulated iron carbide nanoparticles at high pressures and temperatures. Inorg Chem. 2018;57(23):14895–14903.
  • Starchikov S, Zayakhanov VA, Vasiliev AL, et al. Core@shell nanocomposites Fe7C3/FexOy/C obtained by high pressure-high temperature treatment of ferrocene fe(C5H5)2. Carbon. 2021;178:708–717.
  • Harris PJF. Carbon nanotubes and related structures: new materials for the twenty-first century. Cambridge: Cambridge University Press; 1999.
620
Favorite
Share

Related articles