Skip to main content

Preparation of diamond on GaN using microwave plasma chemical vapor deposition with double-substrate structure

Yurui Wang ,
Deng Gao ,
Tong Zhang ,
Hao Zhang ,
Yu Zhang ,
Qiuming Fu ,
Hongyang Zhao ,
Zhibin Ma
Volume 3, Issue 1 (2023)
DOI: 10.1080/26941112.2023.2183097

Abstract

Combining diamond with GaN can significantly improve the heat dissipation performance of GaN-based devices. However, how to avoid the destructive damage to the GaN epi-layer caused by high-temperature hydrogen plasma during the diamond growth is still a problem. This study employed a Si transition layer and double-substrate structure microwave plasma chemical vapor deposition (MPCVD) to prepare diamond film on GaN epi-layer. The effects of double-substrate structure on the diamond growth were studied. The microwave plasma parameters of both single-substrate structure and double-substrate structure MPCVD diagnosed by emission spectra were comparatively investigated. It has been found that the microwave plasma energy of double-substrate structure MPCVD is relatively more concentrated and has higher radicals activity, which is beneficial to the diamond growth. The impacts of the Si transition layer on the diamond growth were also investigated. It demonstrates that the Si transition layer can effectively protect the GaN epi-layer from being etched by hydrogen plasma and improve the diamond growth. The relationship between the thickness of the Si transition layer and the diamond growth and the relationship between diamond film thickness and adhesion has been studied in detail.

Keywords

MPCVD; OES; double-substrate structure; diamond; GaN

References

  • Mishra UK, Parikh P, Wu Y-F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc. IEEE. 2002;90(6):1022–1031.
  • Kanamura M, Ohki T, Kikkawa T, et al. Recent progress in GaN HEMT for high-frequency and high-power applications; Proceedings of the 2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2012. IEEE.
  • Ejeckam F, Francis D, Faili F, et al. S2-T1: GaN-on-diamond: A brief history; Proceedings of the 2014 Lester Eastman Conference on High Performance Devices (LEC), 2014. IEEE.
  • Ishizaki T, Yanase M, Kuno A, et al. Thermal simulation of joints with high thermal conductivities for power electronic devices. Microelectron Reliab. 2015;55(7):1060–1066.
  • Ohno Y, Kuzuhara M. Application of GaN-based heterojunction FETs for advanced wireless communication. IEEE Trans. Electron Devices. 2001;48(3):517–523.
  • Boutros KS, Chu R, Hughes B. GaN power electronics for automotive application; Proceedings of the 2012 IEEE Energytech, 2012. IEEE.
  • Muraro J-L, Nicolas G, Forestier S, et al. GaN for space application: almost ready for flight. Int J Microw Wirel Technol. 2010;2(1):121–133.
  • Zhang L, Wang S, Shao Y, et al. One-step fabrication of porous GaN crystal membrane and its application in energy storage. Sci Rep. 2017;7(1):1–9.
  • Gaska R, Osinsky A, Yang J, et al. Self-heating in high-power AlGaN-GaN HFETs. IEEE Electron Device Lett. 1998;19(3):89–91.
  • Filippov K, Balandin A. The effect of the thermal boundary resistance on self-heating of AlGaN/GaN HFETs. Mater Res Soc Internet J Nitride Semicond Res. 2003;8:4.
  • Francis D, Wasserbauer J, Faili F, et al. GaN-HEMT epilayers on diamond substrates: recent progress. 2007.
  • Shibata H, Waseda Y, Ohta H, et al. High thermal conductivity of gallium nitride (GaN) crystals grown by HVPE process. Mater Trans. 2007;48(10):2782–2786.
  • Wei R, Song S, Yang K, et al. Thermal conductivity of 4H-SiC single crystals. J Appl Phys. 2013;113(5):053503.
  • Singhal S, Li T, Chaudhari A, et al. Reliability of large periphery GaN-on-Si HFETs. Microelectron Reliab. 2006;46(8):1247–1253.
  • Wort C, Sweeney C, Cooper M, et al. Thermal properties of bulk polycrystalline CVD diamond. Diamond Relat Mater. 1994;3(9):1158–1167.
  • Sang L. Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices. Functional Diamond. 2021;1(1):174–188.
  • Cheng Z, Mu F, Yates L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl Mater Interfaces. 2020;12(7):8376–8384.
  • Liang J, Kobayashi A, Shimizu Y, et al. Fabrication of GaN/diamond heterointerface and interfacial chemical bonding state for highly efficient device design. Adv Mater. 2021;33(43):2104564.
  • Chernykh M, Andreev A, Ezubchenko I, et al. GaN-based heterostructures with CVD diamond heat sinks: a new fabrication approach towards efficient electronic devices. Appl Mater Today. 2022;26:101338.
  • Ahmed R, Siddique A, Anderson J, et al. Integration of GaN and diamond using epitaxial lateral overgrowth. ACS Appl Mater Interfaces. 2020;12(35):39397–39404.
  • Soleimanzadeh R, Naamoun M, Floriduz A, et al. Seed dibbling method for the growth of high-quality diamond on GaN. ACS Appl Mater Interfaces. 2021;13(36):43516–43523.
  • Mandal S, Thomas EL, Middleton C, et al. Surface zeta potential and diamond seeding on gallium nitride films. ACS Omega. 2017;2(10):7275–7280.
  • Xin J. Study on preparation and properties of GaN foundation corundum heat dissipation layer. University of Science and Technology Beijing, 2020.
  • Ahmed R, Siddique A, Anderson J, et al. Selective area deposition of hot filament CVD diamond on 100 mm MOCVD grown AlGaN/GaN wafers. Cryst Growth Des. 2019;19(2):672–677.
  • Graebner J, Jin S, Kammlott G, et al. Large anisotropic thermal conductivity in synthetic diamond films. Nature. 1992;359(6394):401–403.
  • May PW, Tsai HY, Wang WN, et al. Deposition of CVD diamond onto GaN. Diamond Relat Mater. 2006;15(4–8):526–530.
  • Kangjun D, Zhibin M, Hongwei H, et al. Novel reactor with double substrate holders for microwave plasma chemical vapor deposition. Chin J Vacuum Sci Technol. 2017;37(5):488.
  • Malakoutian M, Ren C, Woo K, et al. Development of polycrystalline diamond compatible with the latest N-Polar GaN mm-Wave technology. Cryst Growth Des. 2021;21(5):2624–2632.
  • Zhou Y, Ramaneti R, Anaya J, et al. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs. Appl Phys Lett. 2017;111(4):041901.
  • Yates L, Anderson J, Gu X, et al. Low thermal boundary resistance interfaces for GaN-on-diamond devices. ACS Appl Mater Interfaces. 2018;10(28):24302–24309.
  • Kuwabara A, Matsunaga K, Tanaka I. Lattice dynamics and thermodynamical properties of silicon nitride polymorphs. Phys Rev B. 2008;78(6):064104.
  • Liping T. Spectral analysis of diamond films deposited by MPCVD. Wuhan Institute of Technology, 2013.
  • Mitsuda Y, Kojima Y, Yoshida T, et al. The growth of diamond in microwave plasma under low pressure. J Mater Sci. 1987;22(5):1557–1562.
  • Balestrino G, Marinelli M, Milani E, et al. Growth of diamond films: general correlation between film morphology and plasma emission spectra. Appl Phys Lett. 1993;62(8):879–881.
  • Rong WU, Yan LI, Shun-Guan ZHU, et al. Emission spectroscopy diagnostics of plasma electron temperature. Spectrosc Spectral Anal. 2008;4:731–735.
  • Lei X, Wang L, Shen B, et al. Microdrill with variations in thickness of diamond coating. Surf Eng. 2016;32(3):165–171.