Skip to main content

Diamond dislocations analysis by X-ray topography

Shinichi Shikata
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2149279

Abstract

The dislocation identification method using X-ray topography by reflection mode geometry was applied to characterize IIa, Ib and highly B doped high pressure high temperature (HPHT) grown crystals. In both IIa and Ib crystals, dislocations are found to propagate in the <111> grown direction, with dominant vectors of [110] and [1-10], neither of which has no c-axis segment. For Ib crystal, many dislocations are also generated in the <112> and <121> directions, which are slightly tilted to <111>. It was confirmed that the dislocations in the same direction have the same Burgers vectors, but the dislocations are spread in broad area. A total of up to 20 HPHT crystals were measured and found to exhibit different dislocation distributions. This indicates an immature growth technique in terms of dislocation. Measurements of four chemical vapor deposition (CVD) substrates showed numerous dislocation bundles, making individual dislocation directions analysis impossible. CVD substrates suffer from an increase in dislocations due to CVD growth, resulting in poor diamond quality in terms of dislocation. XRT analysis on dislocations of epitaxial growth will be very important prior to CVD substrates analysis.

Keywords

Diamond; HPHT; CVD; dislocation; power device; X-ray topography

References

  • Lang AR. Dislocations in diamond and the origin of trigons. Proc R Soc. 1964;A278:234–242.
  • Lang AR. Topography. Int’l tables for crystallography; 2006. Chap 2.7; p. 113–123.
  • Kowalski G, Lang AR, Makepeace APW, et al. Studies of stacking sault contrast by synchrotron X-ray section topography. J Appl Crystallogr. 1989;22(5):410–430.
  • Moore M. Synchrotron radiation topography. Radiat Phys Chem. 1995;45(3):427–444.
  • Lang AR, Moore M, Makepeace APW, et al. On the dilation of synthetic type Ib diamond by substitutional nitrogen impurity. Philos Trans R Soc. 1991; A337:497–520.
  • Wierzchowski W, Moore M. Observation of interface fringes in bragg-case synchrotron double-crystal images of stacking fault in diamond. Acta Phys Pol A. 1992;82(2):185–191.,
  • Wierzchowski W, Moore M. The images of dislocations in synchrotron bragg-case section topography of diamond. Acta Phys Pol A. 1992;82(2):193–200.
  • Lang AR. Topographic methods for studying defects in diamonds. Diam Relat Mater. 1993;2:106–114.
  • Lang AR. X-ray topographic and optical imaging studies of synthetic diamond. J Appl Crystallogr. 1994;27(6):988–1001.
  • Wierzchowsky W, Moore M. Bragg-case images of stacking faults. Acta Cryst. 1995;A51:831–840.
  • Kowalski G, Moore M, Gledhill G, et al. Synchrotron X-ray studies of strain in (100)-oriented high pressure-high temperature (HPHT) synthetic diamonds. Diam Relat Mater. 1996;5(11):1254–1263.
  • Sumiya H, Toda N, Nishibayashi Y, et al. Crystalline perfection of high purity synthetic diamond crystal. J Cryst Growth. 1997;178(4):485–494.
  • Moore M. Imaging diamond with X-rays. J Phys: Condens Matter. 2009;21(36):364217.
  • Kato Y, Umezawa H, Yamaguchi H, et al. Structural analysis of dislocations in type-IIa single-crystal diamond. Diam Relat Mater. 2012;29:37–41.
  • Sumiya H, Tamasaku K. Large defect-free synthetic type IIa diamond crystals synthesized via high pressure and high temperature. Jpn J Appl Phys. 2012;51:090102.
  • Sumiya H, Harano K, Tamasaku K. HPHT synthesis and crystalline quality of large high-quality (001) and (111) diamond crystals. Diam Relat Mater. 2015;58:221–225.
  • Kasu M, Murakami R, Masuya S, et al. Synchrotron X-ray topography of dislocations in high-pressure high-temperature grown single crystal diamond with low dislocation density. Appl Phys Express. 2014;7(12):125501.
  • Srimongkon K, Ohmagari S, Kato Y, et al. Boron inhomogeneity of single-crystal diamond substrates caused by structural defects: confocal micro-Raman mapping investigations. Diam Relat Mater. 2016;63:21–25.
  • Shikata S, Tsuchida Y, Yamaguchi K, et al. Evaluation of p + HPHT diamond substrate for power device application. Diam Relat Mater. 2017;73:241–247.
  • Shikata S, Kamei E, Yamaguchi K, et al. Dislocation analysis of p type and insulating HPHT diamond seed crystals. MSF. 2018;924:208–211.
  • Kouda K, Sato Y, Takeuchi M, et al. Forbidden X-ray diffraction of highly B doped diamond substrate. Jpn J Appl Phys. 2021;60(7):071002.
  • Shiryaev AA, Masiello F, Hartwig J, et al. X-ray topography of diamond using forbidden reflections: which defects do we really see? J Appl Crystallogr. 2011;44(1):65–72.
  • Masuya S, Hanada K, Uematsu T, et al. Determination of the type of stacking faults in single-crystal high-purity diamond with a low dislocation density of <50cm% by synchrotron X-ray topography. Jpn J Appl Phys. 2016;55:40303
  • Masuya S, Hanada K, Oshima T, et al. Formation of stacking fault and dislocation behavior during the high temperature annealing of single-crystal HPHT diamond. Diam Relat Mater. 2017;75:155–160.
  • Gaukroger MP, Martineau PM, Crowder MJ, et al. X-ray topography studies of dislocations in single crystal CVD diamond, Diam Relat Mater. 2008;17(3):262–269.
  • Martineau PM, Gaukroger MP, Guy KB, et al. High crystalline quality single crystal chemical vapour deposition diamond. J Phys Condens Matter. 2009;21:364217.
  • Prokhorov IA, Ralchenko VG, Bolshakov AP, et al. Analysis of synthetic diamond single crystals by X-ray topography and double crystal diffractometry. Crystallogr Rep. 2013;58(7):1010–1016.
  • Boussadi A, Tallaire A, Kasu M, et al. Reduction of dislocation densities in single crystal CVD diamond by confinement in the lateral sector. Diam Relat Mater. 2018;83:162–169.
  • Masuya S, Kasu M. Dislocations in chemical vapor deposition (111) single crystal diamond observed by synchrotron X-ray topography and their relation with etch pits. Diam Relat Mater. 2018;90:40–46.
  • Umezawa H, Kato Y, Watanabe H, et al. Characterization of crystallographic defects in homoepitaxial diamond films by synchrotron X-ray topography and cathodoluminescence. Diam Relat Mater. 2011;20(4):523–526.
  • Shikata S, Matsuyama Y, Teraji T. Dislocation analysis of homoepitaxial diamond (001) film by X-ray topography. Jpn J Appl Phys. 2019;58(4):045503.
  • Kato Y, Umezawa H, Shikata S, et al. Effect of an ultraflat substrate on the epitaxial growth of chemical vapor deposited diamond. Appl Phys Express. 2013;6(2):025506.
  • Kato Y, Umezawa H, Shikata S. X-ray topographic study of a homoepitaxial diamond layer on an ultraviolet-­irradiated precision polished substrate. Acta Phys Pol A. 2014;125(4):969–971.
  • Kato Y, Umezawa H, Yamaguchi H, et al. X-ray topography used to observe dislocations in epitaxially grown diamond film. Jpn J Appl Phys. 2012;51:090103.
  • Gonzalez-Manas M, Vallejo B. Misfit dislocations ­between boron-doped homoepitaxial films and diamond substrates studied by X-ray diffraction topography. J Appl Crystallogr. 2018;51(6):1684–1690.
  • Shikata S, Akashi N. Dislocation vector analysis method of deep dislocation having c-axis segment in diamond. MSF. 2020;1004:519–524.
  • Shikata S, Miyajima K, Akashi N. Analysis method of diamond dislocation vectors using reflectance mode X-ray topography. Diam Relat Mater. 2021;118:108502.
  • Sato Y, Miyajima K, Shikata S. Complete analysis of dislocations in single crystal diamonds. Diam Relat Mater. 2022;126:109129.
  • Ishiji K, Kawado S, Hirai Y. Development of white and monochromatic X-ray topography system in Saga‐LS. Phys Status Solidi A. 2011;208(11):2516–2521.
  • NIST Standard Reference Database 66.
  • Shul’pina IL, Argunava TS. Detection of dislocations in strongly absorbing crystals by projection X-ray topography in back reflection. J Phys D. 1995;28: A47.
  • Ishiji K, Kawado S, Hirai Y, et al. Determination of observable depth of dislocations in 4H-SiC by X-ray topography in backreflection. Jpn J Appl Phys. 2017;56(10):106601.
  • Allen BP, Evans T. Aggregation of nitrogen in diamond, including platelet formation. R Soc Lond A, Math Phys Sci. 1981;375:93–104.
  • Mikata N, Takeuchi M, Ohtani N, et al. Effect of surface irregularities on diamond schottky barrier diode with threading dislocations. Diam Relat Mater. 2022;127:109188.
  • Akashi N, Fujimaki N, Shikata S. Influence of threading dislocation on diamond schottky barrier diode characteristics. Diam Relat Mater. 2020;109:108024.