Skip to main content

Past, present, and the future of the research and commercialization of CVD diamond in China

F. X. Lu
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2144769

Abstract

It has been half of a century since the publication of the early reports about CVD diamond films in the world in the early 1970’s. The reports for meaningful laboratory growth of diamond films with much higher growth rate and higher quality could be found in the early 1980’s, under the so-called “Diamond Fever” initiated all over the world. In less than 10 years later, CVD diamond research had started in China as “863 Plan” (High Technology Research and Development Plan in China), a newly launched program in 1987. 35 years later, it is very interesting to explore what really happened to the CVD diamond in China. As a multi-functional material with a vast combination of extraordinary electrical, mechanical, thermal, optical, acoustic, and electro-chemistry properties, the CVD diamond has wide applications potentially in the field of multidiscipline high technologies. Therefore, this article aims to provide a general review on the CVD diamond by presenting a clearer picture about the history, the research status and its development, particularly the commercialization in China. Finally, the general trend in the near future is discussed.

Keywords

CVD diamond; research and development; commercialization; China

References

  • Review report on the Key technologies on the diamond film deposition and application. Specialist Committee of New Materials of the “863 Plan”, January 6, 1996. Beijing.
  • Lu FX, Lee ST, Jiang X, editors. Diam Relat Mater. 2000;9(9–10).
  • Li XJ, Tang WZ, Lu FX, et al. Design of novel plasma reactor for diamond film deposition. Diam Relat Mater. 2011;20(4):480–484.
  • Li YF, Su JJ, Liu YQ, et al. Design of a new TM021 mode cavity type MPCVD reactor for diamond film deposition. Diam Relat Mater. 2014;44:88–94.
  • Z. Lisheng, H. Ting, editors. 2021 Annual report on carbon materials industry development. CarbonTech Magazine; Ningbo City, Zhejiang Province: NingBo De Tai Zhong Yan Information Technology Ltd.; 2021; p. 211.
  • Xuan Z, Yang P, Pu X, et al. Plasma diagnosis in d.c.-biased hot-filament-assisted chemical vapour deposition by double-probe method. Diamond Relat Mater. 1993;2(2–4):476–480.
  • Lichang Q, Zhenwu X, Li H, et al. Presence of core particles in diamond crystals grown by electron assisted chemical vapor deposition. J Cryst Growth. 1991;112(2–3):580–582.
  • Kurihara K, Sasaki K, Kawarada M, et al. High-rate synthesis of diamond by DC plasma jet chemical vapor deposition. Appl. Phys. Lett. 1988;52(6):437–438.
  • Ohtake N, Yoshikawa M. Diamond film preparation by arc discharge plasma jet chemical vapor deposition in the methane atmosphere. J. Electrochem. Soc. 1990;137(2):717–722.
  • Lu FX, Li GH, et al. Chapter 4, DC Arc Plasma Jet CVD. In Deposition and application of CVD diamond film. Lu F.X. editor. Beijing, China: Science Press of China; 2014.
  • Lu FX, Zhong GF, Sun JG, et al. A new type of DC arc plasma torch for low cost large area diamond deposition. Diamond Relat Mater. 1998;7(6):737–741.
  • Lu FX, Tang WZ, Li GH, et al. Large area high quality diamond film deposition by magnetic field controlled dc arc plasma torch with rotating arc root. Proceedings of ADC/FCT’99, Yoshikawa M. et al. eds, Tsukuba, Japan, Aug.30 – Sept. 3, 1999, p. 14 (Invited).
  • Lu G, Swann WT. Measurement of thermal diffusivity of polycrystalline diamond film by the converging thermal wave technique. Appl. Phys. Lett. 1991;59(13):1556–1558.
  • Lu G, Bigelow LK. Material properties of CVD diamond produced by the DC arc-jet. Diamond Relat Mater. 1992;1(2–4):134–136.
  • Stephan PM, Hay RA, Dean CD. The new diamond technology and its application in cutting tools. Diamond Relat Mater. 1992;1(5–6):710–716.
  • Martorell IA, Partlow WD, Young RM, et al. Gas recycling and flow control for cost reduction of diamond films deposited by DC arc-jet. Diamond Relat Mater. 1999;8(1):29–36.
  • Bai Y, Jin Z, Lv X, et al. High rate growth of thick diamond films by high-current hot-cathode PCVD. J Cryst Growth. 2005;280(3–4):539–544.
  • Bai Y, Jin Z, Lv X, et al. Influence of cathode temperature on gas discharge and growth of diamond films in DC-PCVD processing. Diamond Relat Mater. 2005;14(9):1494–1497.
  • Chae KW, Baik YJ, Park JK, et al. The 8-inch free-standing CVD diamond wafer fabricated by DC-PACVD. Diam Relat Mater. 2010;19(10):1168–1171.
  • Supplied by Beijing Worldia Diamond Tools Co., Ltd. 2022.
  • Diamond deposition: science and Technology. 1991;2(4):2–12.
  • Sun FH, Zhang ZM, et al. Thin Diamond Film Coated Tungsten Carbide Tools. In: Deposition and application of CVD diamond film. Chapter 17. Lu FX, editor. Beijing, China: Science Press of China. 2014.
  • Sun FH, Ma YP, Shen B, et al. Fabrication and application of nano–microcrystalline composite diamond films on the interior hole surfaces of Co cemented tungsten carbide substrates. Diamond Relat. Mater. 2009;18(2–3):276–282.
  • Hu DP, Ji XL, Li JG, et al. Preparation and performance of diamond coated drawing dies. Diam Abras Eng. 2010;30(3):44–48. (in Chinese).
  • Murakawa M, Takeuchi S, Yoshida K. Fabrication of a diamond-coated drawing die and performance test. J Japan Soc Technolo Plast. 1996;37(422):277–282.
  • Chandran M, Kumaran CR, Dumpala R, et al. Nanocrystalline diamond coatings on the interior of WC–Co dies for drawing carbon steel tubes: enhancement of tube properties. Diam Relat Mater. 2014;50:33–37.
  • Li GH, Cui YM, Dong W, et al. Diamond coating deposited on the inner wall of annular workpiece by rotating arc heating. Diam Abras Eng. 2022;42(1):42–46. in Chinese).
  • Cui YM, Li GH, Jiang L. Diamond coated drawing die prepared by direct current arc plasma jet method. Diam Abras Eng. 2019;9(6):25–29. (in Chinese)
  • Cui YM, Li GH, Dong W, et al. Preparation and application of diamond coating drawing dies for the metal sheath high voltage and ultrahigh voltage cable. 2021. 5: 36–40
  • Lu FX, Tang WZ, Li CM, et al. Advances in the diamond film coated WC-Co cutting tools. Mach Workers (Hot Process). 2004;5:62-64 + 2004; 6: 18-20
  • Wei J, J, He Q, Lv FX. Synthesis of boron doped diamond films by MPCVD and anodic oxidation of p-n itrophenol on Ti/BDD electrode. J Synth Cryst. 2009;38(2):422–425. (in Chinese)
  • Zhou C, Xu F, Junhua X, et al. Double-sided diamond electrode prepared by gas boriding. J Synth Cryst. 2013;43(2):230–234. (in Chinese)
  • Yu Z, Yi Z, Tong Y, et al. Research progress and application of boron-doped diamond film. J Synth Cryst. 2021;50(6):1138–1148. (in Chinese)
  • An K, Chen LX, Yan XB, et al. Fracture behavior of diamond films deposited by DC arc plasma jet CVD. Ceram Int. 2018;44(11):13402–13408.
  • Schafer L, Fryda M, Matthee, et al. Investigation of DiaChem electrodes for industrial application. In: Proceedings of the 6th Applied Diamond Conference/2nd Frontier Carbon Technology Joint Conference (ADC/FCT2001). Y Tzeng, editor; 2001. p. 158.
  • Wei JJ, Li CM, Lv FX, et al. Epitaxial growth of BDD diamond films on top of the freestanding diamond film substrate. J Synth Cryst. 2015;44(12):3433–3438.
  • Zhongyou W. One kind of the installation for the treatment of the industrial waste water. Chinese patent CN209619085U. 2019.
  • Xiujuan Q, Lishen X, et al. One kind of synergetic three-dimensional device for chemical disinfection and sterilization. Chinese patent CN213171603U. 2021.
  • Ning Z, Congcong Z, et al. A method for the preparation of BDD film electrode for the detection of the dopamine. Chinese patent CN102520042B. 2014.
  • Liu XH, Chen XM, Li XW, et al. Detection of the noradrenalin using the L-serine decorated BDD film electrode. J Synth Cryst. 2014;43(9):2281–2285.
  • Zhang SN, Zhu N, Chen KY, et al. Detection of vitamin B6 on the decorated BDD film electrode. J Synth Cryst. 2014;43(6):1460–1464.
  • Dong Z, Yan Z, et al. One kind of the heterostructure device on silicon substrate and the preparation method. Chinese Patent CN108417618A. 2018.
  • Man WD, Chuang CZ, Zhu JB. One kind of touch control switch made by diamond and its preparation method. Chinese Patent CN111441033A. 2020.
  • Jingping H, Sijing C, et al. One kind of the BDD film decorated attenuation total reflection wafer and the preparation method. Chinese Patent CN109060900B. 2020.
  • Yao CZ, Sun FH, Zhang ZM, et al. Preparation and testing of the BDD film coated cutting tools. J Shanghai Jiaotong Univ. 2008;5:739–743.
  • Wang J, He ZB, Tan XL, et al. High-performance 2.6 V aqueous symmetric supercapacitor based on porous boron-doped diamond via regrowth of diamond nanoparticles. Carbon. 2020;160:71–79.
  • Lu W, Li CM, Miao JY, et al. Application of high-thermal-conductivity diamond for space phased array antenna. Funct Diam. 2021;1(1):189–196.
  • Huang YB, Chen LX, Li CM, et al. The 7-inches freestanding diamond thermal conductive film fabricated by DC arc plasma jet CVD with multi-stage magnetic fields. J Synth Cryst. 2022;122:108812.
  • Chen Y-J, Young T-F. Thermal stress and heat transfer characteristics of a Cu/diamond/Cu heat spreading device. Diam Relat Mater. 2009;18(2–3):283–286.
  • Bo YANG, Jia-Kang YU, Chuang CHEN. Microstructure and thermal expansion of Ti coated diamond/Al composites. Trans Nonferrous Met Soc China. 2009;19:1167–1173.
  • Qu XH, Zhang L, Wu M, et al. Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog Nat Sci: Mater Int. 2011;21(3):189–197.
  • Koidl P, Klages CP. Optical applications of polycrystalline diamond. Diamond Relat Mater. 1992;1(10–11):1065–1074.
  • Comment on the progresses of the projects in the field of new materials in the “863 plan” in 1997. High Technol News Lett. 1998;20:1. Interior report, Department of Industry Technology, National Science and Technology Committee (Ministry of Science and Technology of China).
  • Photographs supplied by the Hebei Plasma Diamond Co. Ltd. 2022.
  • Lu FX, Jiang Z, Tang WZ, et al. Accurate measurement of strength and fracture toughness for miniature size thick diamond film samples by three-point bending at constant loading rate. Diamond Relat Mater. 2001;10(3-7):770–774.
  • Jiang Z, Lu FX, Tang WZ, et al. Accurate measurement of fracture toughness of free standing diamond films by three point bending tests with sharp pre-cracked specimens. Diamond Relat Mater. 2000;9(9-10):1734–1738.
  • Li YF, Guo H, Sun ZL, et al. A 915 MHz/75 kW cylindrical cavity type microwave plasma chemical vapor deposition reactor with a ladder-shaped circumferential antenna. Diamond Relat Mater. 2017;7:867–872.
  • Unpublished data. University of Science and Technology Beijing. 2007.
  • Lu FX, He Q, Guo SB, et al. Sand erosion of freestanding diamond films prepared by DC arcjet. Diam Relat Mater. 2010;19(7–9):936–941.
  • Lu FX, Liu JM, Chen GC, et al. Oxidation behavior of high-quality freestanding diamond films by high power arcjet operating at gas recycling mode. Diamond Relat Mater. 2004;13(3):533–538.
  • Willingham CB, Hartnett TM, Miller RP, et al. Bulk diamond for IR/RF windows and domes. Raytheon Electronic Systems. SPIE. 1997;3060:160–168.
  • Klein CA. Diamond windows and domes: flexural strength and thermal shock. Diam Relat Mater Rials. 2002;11(2):218–227.
  • Hingst U, Korber S. IR-window design for hypersonic missile seekers - thermal shock and cooling systems. SPIE. 2001;4369:662–672.
  • Sussman RS. Applications of diamond films synthesized by chemical vapor deposition. Riedel R. editor. Wiley-VCH; 2000. Chapter 2, Hard materials; 573–622.
  • Klein Claude A. Thermal shock resistance of infrared transmitting windows and domes. Opt Eng Opt Eng Rep. 1998;37(10):2826–2836.
  • Li C, Wang L, Chen L, et al. Free-standing diamond films deposited by DC arc plasma jet on graphite substrates with a destroyable Ti interlayer. Diam Relat Mater. 2009;18(11):1348–1352.
  • Data supplied by the Hebei Plasma Diamond. 2022.
  • Xing YQ, Zhao JK, Li W C, et al. Simulation study on the performance of micro X-ray tube with diamond optical window. Nucl Tech. 2021;44(04):12–18. (in Chinese).
  • Ying X, Xu X, Luo J, et al. A near-infrared diamond anti-reflective filter window. Diamond Relat Mater. 2000;9(9-10):1730–1733.
  • Yin Z, Tan HS, Smith FW. Determination of the optical constants of diamond films with a rough growth surface. Diamond Relat Mater. 1996;5(12):1490–1496.
  • Korenstein R, Goldman L, et al. Diamond coated ZnS for improved erosion resistance. SPIE. 1997;3060:181–195.
  • Klein CA. Normal and interfacial stresses in thin-film coated optics: the case of diamond-coated zinc sulfide windows. Opt Eng Opt Eng Rep. 2001;40(6):1115–1124.
  • Lu FX, Tong YM, Gao XH, et al. Preparation of diamond film coatings on multi-spectrum ZnS. MSF. 2005;475-479:3599–3604.
  • Li JG, Wei J, Hu DP, et al. Dual wavelength transmission enhancement of diamond thin films on Si substrate. Abstract Book, TFC’09; 2009. 118
  • Lux O, Sarang S, Williams RJ, et al. Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection. Opt Express. 2016;24(24):27812.
  • Yang X, Kitzler O, Spence DJ, et al. Diamond sodium guide star laser. Opt Lett. 2020;45(7):1898.
  • Sabella A, Piper JA, Mildren RP. 1240 nm diamond Raman laser operating near the quantum limit. Opt Lett. 2010;35(23):3874–3876.
  • Li MY, Yang XZ, Sun YX, et al. Single-longitudinal mode continuous-wave diamond Raman laser. Infrared Laser Eng. 2022;51(6): 1–14. (in Chinese).
  • Bai Z, Zhao C, Qi Y, et al. Towards long-wave infrared lasing by diamond Raman conversion. Conference on Lasers and Electro-optics/Pacific Rim. 2020. 1–2.
  • Yang X, Bai Z, Chen D, et al. Widely-tunable single-frequency diamond Raman laser. Opt Express. 2021;29(18):29449.
  • Sun L, Man WD, Wang JH, et al. Development of synthesizing CVD diamond films for semiconductor materials. Vac Cryog. 2008;(03):134–139 + 171. (in Chinese).
  • Han JN. The mechanism of diamond growth and the doping of n-type diamond [Ph.D. thesis]. Hebei University; 2002. (in Chinese).
  • Li ZB, Wang X, Li Y. N-type conversion of diamond by modulation of B-S co-doping ratio. J Atom Mol Phys. 2021;38(6):066002. (in Chinese).
  • Liu DY, Hao LC, Teng Y, et al. Nitrogen modulation of boron doping behavior for accessible n-type diamond. APL Mater. 2021;9(8):081106.
  • Jin ZS, Lv XY, Zou GT. Heteroepitaxial growth of diamond on C-BN substrate. Chin High Tech Lett. 1994;4:15–17. (in Chinese).
  • Liao K, Wang WL. Effect of the nucleation density on the epitaxial growth of diamond films on silicon substrate. Microfabr Technol. 1997;4:37–42. (in Chinese).
  • You LP, Gao QJ. Direct observation on the interface atomic arrangement of the epitaxial diamond film grown on silicon substrate. J Electron Microsc. 1996;15(6):489. (in Chinese).
  • Lin ZD, Fen KA. Mechanism for the metastable growth, nucleation, and epitaxy of diamond film in the atomic scale. J Acad Sci China. 1998;3:201–203. (in Chinese).
  • Li YF, She JM, Tang WZ, et al. Heteroepitaxial nucleation of diamond on Ir (100)/MgO (100) substrate by bias enhanced microwave plasma chemical vapor deposition method (in chinese). J Synth Cryst. 2015;44:896–901.
  • Wei Q, Lin F, Wang HX, et al. A method for the reproductive growth of the heteroepitaxial single crystal diamond. Chinese Patent CN114016128A. 2022.
  • Dai B, Wang WH, et al. A method for the increase in the nucleation uniformity in diamond heteroepitaxy based on the grid-structured electrodes. Chinese Patent CN112695382A. 2021.
  • Wang HR, Yao D, Jin JS, et al. Recover characteristics of the CMOS/SOD nuclear resistant electronics after radiation. Acta Sci Nat Univ Atis Jilinensis. 1999;3:72–74.
  • Li HD, Lv XY, Zou GT, et al. A kind of nano insulator material and its preparation method. Chinese Patent CN101587902B. 2011.
  • Mendes JC, Liehr M, Li CG. Diamond/GaN HEMTs: where from and where to? Materials. 2022;15(2):415–423.
  • Zhen YT, Li CM, et al. A kind of preparation method for the diamond-based gallium nitride composite substrate. Chinese Patent CN112981535B. 2021.
  • Yang SQ, Ren ZY, Zhang JF, et al. Research on growth of polycrystalline diamond on Si-based GaN heterojunction material. Res Prog SSE. 2021;41(01):18–23. (in Chinese).
  • Liu T, Kong Y, Wu L, et al. 3-inch GaN-on-diamond HEMTs with device-first transfer technology. IEEE Electron Device Lett. 2017;38(10):1417–1420.
  • Wang K, Ruan K, Hu W, et al. Room temperature bonding of GaN on diamond wafers by using Mo/Au nano-layer for high-power semiconductor devices. Scr Mater. 2020;174:87–90.
  • Zhao D, Liu ZC, Wang W, et al. Fabrication of dual-termination Schottky barrier diode by using oxygen-/fluorine-terminated diamond. Appl Surf Sci. 2018;457:411–416.
  • Li CM, Liu JL, Chen LX, et al. An amazing semiconductor choice for high‐frequency FET: h ‐terminated polycrystalline diamond film prepared by DC arc jet CVD. Phys Status Solidi C. 2014;11(11–12):1692–1696.
  • Cui A, Zhang J, Ren ZY, et al. Microwave power performance analysis of hydrogen terminated diamond MOSFET. Diamond Relat Mater. 2021;118(9):108538.
  • Yu C, Zhou CJ, Guo JC, et al. 650 mW/mm output power density of H-terminated polycrystalline diamond MISFET at 10 GHz. Electron Lett. 2020;56(7):334–335.
  • Liu JM, Xia YB, Wang LJ, et al. Preparation and the properties of the CVD diamond film X-Ray detectors. Nucl Electron Detect Technol. 2006;26(5):669–672.
  • Wang L, Ouyang XP, Lu FX, et al. Performance of the diamond thin film detector. High Energy Phys Nucl Phys. 2007;31(12):1112–1115. (in Chinese).
  • Yao K, Yang C, Zang X, et al. Carbon SP2-SP3 technology: graphene-on-diamond thin film UV detector. IEEE International Conference on Micro Electro Mechanical Systems. IEEE; 2014. p. 1159–1162
  • Liu ZC, Ao JP, Li FN, et al. Fabrication of three-dimensional diamond ultraviolet photodetector through down-top method. Appl Phys Lett. 2016;109(15):153507.
  • Xue J, Liu K, Liu B, et al. UV-blue photodetectors based on n-SnOx/p-diamond heterojunctions. Mater Lett. 2019;257:126621.1–126621.4.
  • Zhang ZF. Research on the sun-blind violet diamond detector array [Master dissertation]. Zhengzhou University; 2021.
  • Guo YZ, Liu JL, Liu JW, et al. Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition. Int J Miner Metall Mater. 2020;27(5):703–712.
  • Liu JL, Zhu XH, Guo YZ, et al. Material development and neutron detection performance of diamond detector. Vac Electron. 2021;(05):46–53 + 72. (in Chinese)
  • Cooperation Program on the New Type Diamond Structure High Energy Particle Detectors. A contract (No. 2015DFG02100) from the Ministry of Science and Technology of China, undertaking by Nanjing University and University of Science and Technology Beijing, 2015–2018.
  • Liu YH, Qi M, Hei LF, et al. The raman spectroscopy and XPS investigation of CVD diamond after fast neutron irradiation. Mater Today Commun. 2020;22:100699.
  • Kurchaninov L. Neutron irradiation of diamond detectors. An internal week meeting report of the Liquid Ar Forward Calorimeter Group, CERN. Dec. 2013.
  • Liu YH, Qi M, Hei LF, et al. Proton irradiation tests of single crystal diamond detector at CIAE. Nucl Mater Energy. 2020;22:100735.
  • Zheng YT, Li CM, Liu JL, et al. Diamond with nitrogen: states, control, and applications. Funct Diam. 2021;1(1):63–82.
  • Gao YF. The optical properties of color centers in single crystal diamond [Ph.D. thesis]. Zhengzhou University; 2019. (in Chinese).
  • Yu B. Study on preparation and photoluminescence of silicon vacancy color centers in nanocrystalline diamond [Ph.D. thesis]. University of Science and Technology of China; 2021. (in Chinese).
  • Zhang HC, Chen CK, Mei YS, et al. Micron-sized diamond particles containing Ge-V and Si-V color centers. Chin Phys B. 2019;28(7):076103.
  • Zhao PJ. Single-molecule paramagnetic resonance spectroscopy based on nitrogen-vacancy center in diamond [Ph.D. thesis]. University of Science and Technology of China; 2021. (in Chinese).
  • Zhou JW, Wang PF, Shi F Z, et al. Quantum information processing and metrology with color centers in diamonds. Front Phys. 2014;9(5):587–597.
  • Zhao BW. Preparation of NV color center in diamond and its applications in quantum sensing [Ph.D. thesis]. University of Science and Technology of China; 2020. (in Chinese).
  • Chen QM, Wu RB. Optimized all-optical control of single spin quantum dynamics in diamond. IFAC Pap Line. 2017;50(1):11755–11759.
  • Li YC, Xin T, Lu D, et al. Dynamical-invariant-based holonomic quantum gates: theory and experiment. Fundam Res. 2022; (Corrected proof).
  • Li CM, Liu JL, Wei JJ, et al. Progress of chemical vapor deposition (CVD) diamond in China. J Synth Cryst. 2022;51(5):759–780.
  • In2021 Annual report on the carbon material industry development. Zhang LS, et al., editors. Zhejiang Province, China: CarbonTech magazine; 2021. p. 221.
  • Zhang D. Windstorm of the redundancy in the output capacity of the laboratory grown diamond is coming, the center of windstorm is China. [cyber news]. Chinese Gold and Jewelry; 2022.
  • Silva F, Achard J, Brinza O, et al. High quality, large surface area, homoepitaxial MPACVD diamond growth. Diam Relat Mater. 2009;18(5–8):683–697.
  • Liang Q, Yan CS, Mao HK, et al. Recent advances in high-growth rate single-crystal CVD diamond. Diam Relat Mater. 2009;18(5–8):698–703.
  • Breakthrough on the laboratory grown diamond by China: 7.06 carat. [cyber news]. IGI Shanghai Branch, Shanghai@IGI.org; 2020. 3–17.
  • A new record on laboratory grown diamond from China-45.152carat. [cyber news]. IGI Shanghai Branch, Shanghai@IGI.org; 2020. 7–10.
  • Liu XC, Sun ZL, Guo H, et al. Preparation of single-crystal diamond for small angle X-ray scattering in situ loading test. Diam Relat Mater. 2022;121:108719.
  • Diamond anvil in the R&D of the two-dimensional heterojunction device. Br News in Super Hard Eng. 2020;32(3):55.( in Chinese).
  • XD, Zhang, RH, Hu SM. In situ observation in the diamond anvil on the high-pressure high temperature thermal water fluid in the interior of the earth. Acta Geol Silica. 2016;90(8):1846–1859. (in Chinese).
  • Li XD, Li H, Li BS. Experiment technique for single crystal synchrotron radiation diffraction. Acta Phys Sin. 2017;66(3):036203.
  • http://www.mitsubishielectric.com/news/2015/0622-a.html.
  • http://newsroom.toyota.co.jp/en/detail/2656842.
  • Shikata S. Single crystal diamond wafers for high power electronics. Diam Relat Mater. 2016;65:168–175.
  • Shikata S, Umezawa H. Development of diamond-based power device. Synthesiology. 2013;6(3):147–157.
  • 2019 International proseminar on the single diamond and diamond based electronic devices has been held in Xian Jiaotong University. Super Hard Mater Eng. 2019;31(3):11. (in Chinese).
  • 2018 International proseminar on the single diamond and diamond based electronic devices has been held in Xian Jiaotong University. Super Hard Mater Eng. 2018;30(5):15. (in Chinese).
  • Shu GY. Investigation on the mechanisms of the homoepitaxial bonding, and the structure and properties [Ph.D. thesis]. Harbin Engineering University; 2020. (in Chinese).
  • Li ZK, Lu ZH, et al. Growth of large size mosaic single crystal diamond. Chem Eng Equip. 2021;10:7–8 + 20. (in Chinese).
  • Wang XW. An investigation on the split joint mosaic single crystal diamond with HPHT single crystal diamond plate [Ph.D. thesis]. Shandong University; 2020. (in Chinese).
  • Shu G, Dai B, Ralchenko VG, et al. Epitaxial growth of mosaic diamond: mapping of stress and defects in crystal junction with a confocal raman spectroscopy. J Cryst Growth. 2017;463:19–26.
  • Wang W-h, Wang Y, Shu G-y, et al. Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth. New Carbon Mater. 2021;36(6):1034–1045.
2353
Favorite
Share

Related articles