Skip to main content

Viability and proliferation of A549 cell line on the surface of micro-, nano- and ultrananocrystalline diamond films grown by HFCVD with tailored gases

Jorge A. Montes-Gutiérrez ,
Armida. A. Gil-Salido ,
Jesus J. Alcantar-Peña ,
Elida de Obaldia ,
Rafael Garcia-Gutierrez ,
Oscar E. Contreras-López ,
Orlando Auciello
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2126950


This article describes key material science/technology issues to implement polycrystalline diamond scaffolds to enable processes for biological cells growth relevant for using cells grown in the laboratory for the treatment of human biological conditions. Issues investigated include


Diamond films; cell culture; growth; proliferation


  • Saini M, Singh Y, Arora P, et al. Implant biomaterials: a comprehensive review. WJCC. 2015;3(1):52. doi:10.12998/wjcc.v3.i1.52.
  • López-Chávez G, editor, Auciello O, Main Collaborator. Implant dentistry/regenerative oral surgery. Ciudad de México, México: Cols Publisher; 2020.
  • Kang K, Auciello O, Olmedo DG, et al. Ch. 5: Science and technology of ultrananocrystalline diamond (UNCDTM) Coatings for new generation of implantable prostheses: dental implants, artificial hips and knees, ultrananocrystalline diamond coatings for new generation high-tech and medical devices, O. Auciello, editor. New York, NY, USA: Cambridge Publisher; 2022. p. 141.
  • Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention – a review. Recent Pat Corros Sci. 2010;2(1):40–54.
  • Tasat DR, Bruno ME, Domingo M, et al. Biokinetics and tissue response to ultrananocrystalline diamond nanoparticles employed as coating for biomedical devices. J Biomed Mater Res. 2017;105(8):2408–2415. doi:10.1002/jbm.b.33777.
  • Auciello O, Sumant AV. Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices (invited). Diamond Relat Mater. 2010;19(7–9):699–718.
  • Naguib N, Birrell J, Elam J, Carllisle JA, Auciello O. A method to grow carbon thin films consisting entirely of diamond grains 3–5 nm in size and high-energy grain boundaries. US Patent #7. 2006;128:8893.
  • Auciello O, editor. Ultrananocrystalline diamond coatings for new generation high-tech and medical devices. New York, NY, USA: Cambridge Publisher; 2022.
  • Butler JE, Sumant AV. The CVD of nanodiamond materials. Chem Vap Depos. 2008;14(7–8):145–160.
  • Williams OA. Nanocrystalline diamond. Diamond Related Materials. 2011;20(5–6):621–640.
  • Piazza F, Morell G. Synthesis of diamond at sub 300 °C substrate temperature. Diamond Relat Mater. 2007;16(11):1950–1957.
  • Fuentes-Fernandez EMA, Alcantar-Peña JJ, Lee G, et al. Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via hot filament chemical vapor deposition for scaling to large area applications. Thin Solid Films. 2016;603:62–68.
  • Kalish R. The search for donors in diamond. Diamond Relat Mater. 2001;10(9–10):1749–1755.
  • Prelas M, Popovici G, Bigelow LK. Handbook of industrial diamonds and diamond films. Usp Fiziol Nauk. 1997;41(10);1149.
  • Advanced Diamond Technologies (Company founded by Auciello and colleagues (2003, profitable 2014, sold to large company 2019), 2019.
  • Auciello O, Lee G. Science and technology of integrated multifunctional piezoelectric oxides/ultrananocrystalline diamond (UNCDTM) films for a new generation of biomedical MEMS energy generation, drug delivery and sensor devices, in book ultrananocrystalline diamond coatings for new generation High-Tech and medical devices, Auciello O, editor. New York, NY, USA: Cambridge Publisher; 2022. p. 237.
  • Montaño-Figueroa AG, Alcantar-Peña JJ, Tirado P, et al. Tailoring of polycrystalline diamond surfaces from hydrophilic to superhydrophobic via synergistic chemical plus micro-structuring processes. Carbon. 2018;139:361–368.
  • Denisenko A, Aleksov A, Pribil A, et al. Hypothesis on the conductivity mechanism in hydrogen terminated diamond films. Diamond Relat Mater. 2000;9(3–6):1138–1142.
  • Sasaki Y, Osanai H, Ohtani Y, et al. Influence of hydrogen gas flow ratio on the properties of silicon-and nitrogen-doped diamond-like carbon films by plasma-enhanced chemical vapor deposition. Diamond Relat Mater. 2022;123:108878.
  • Wade T, Geis MW, Fedynyshyn TH, et al. Effect of surface roughness and H–termination chemistry on diamond’s semiconducting surface conductance. Diamond Relat Mater. 2017;76:79–85.
  • Budil J, Lišková PM, Artemenko A, et al. Anti-adhesive properties of nanocrystalline diamond films against Escherichia coli bacterium: influence of surface termination and cultivation medium. Diamond Relat Mater. 2018;83:87–93.
  • Garguilo JM, Davis BA, Buddie M, et al. Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films. Diamond Relat Mater. 2004;13(4–8):595–599.
  • Dychalska A, Popielarski P, Franków W, et al. Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Mater Sci-Pol. 2015;33(4):799–805.
  • Montes-Gutiérrez JA, Alcantar-Peña JJ, de Obaldia E, et al. Afterglow, thermoluminescence and optically stimulated luminescence characterization of micro-, nano- and ultrananocrystalline diamond films grown on silicon by HFCVD. Diamond Relat Mater. 2018;85:117–124. doi:10.18502/keg.v3i1.144121.
  • de Obaldia E, Tirado P, Alcantar-Peña JJ, et al. Photoluminescence in raman scattering: Effects of HfO2 template layer on ultrananocrystalline diamond (UNCD) films grown on stainless steel substrates. KEG. 2018;3(1):263–272.
  • Adamopoulos G, Robertson J, Morrison N, et al. Hydrogen content estimation of hydrogenated amorphous carbon by visible raman spectroscopy. J Appl Phys. 2004;96(11):6348–6352.
  • Hemelaar SR, Saspaanithy B, L’Hommelet SR, et al. The response of HeLa cells to fluorescent nanodiamond uptake. Sensors. 2018;18(2):355.
  • Ong SY, Van Harmelen RJJ, Norouzi N, et al. Interaction of nanodiamonds with bacteria. Nanoscale. 2018;10(36):17117–17124.

Related articles