Skip to main content

Hydrogen-terminated diamond MOSFETs on (0 0 1) single crystal diamond with state of the art high RF power density

Cui Yu ,
Chuangjie Zhou ,
Jianchao Guo ,
Zezhao He ,
Mengyu Ma ,
Hao Yu ,
Xubo Song ,
Aimin Bu ,
Zhihong Feng
+ 1 authors fewer
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2082853

Abstract

Diamond field-effect transistor (FET) has great application potential for high frequency and high power electronic devices. In this work, diamond FETs were fabricated on (0 0 1) single crystal diamond with homoepitaxial layer. The nitrogen impurity content in the homoepitaxial layer is greatly decreased as measured by the Raman and photoluminescence spectra. The diamond field effect transistor with 100 nm Al2O3 as gate dielectric shows ohomic contact resistance of 35 Ω . mm, maximum drain saturation current density of 500 mA/mm, and maximum transconductance of 20.1 mS/mm. Due to the high quality of Al2O3 gate dielectric and single crystal diamond substrate, the drain work voltage of −58 V is achieved for the diamond FETs. A continuous wave output power density of 4.2 W/mm at 2 GHz is obtained. The output power densities at 4 and 10 GHz are also improved and achieve 3.1 and 1.7 W/mm, respectively. This work shows the application potential of single crystal diamond for high frequency and high power electronic devices.

Keywords

Diamond; field effect transistor; frequency; power density

References

  • Wort CJH, Balmer RS. Diamond as an electronic material. Mater Today. 2008;11(1–2):22–28.
  • Yamasaki S, Gheeraert E, Koide Y. Doping and interface of homoepitaxial diamond for electronic applications. MRS Bull. 2014;39(6):499–503.
  • Kawarada H, Aoki M, Ito M. Enhancement mode metal-semiconductor field effect transistors using homoepitaxial diamonds. Appl Phys Lett. 1994;65(12):1563–1565.
  • Hirama K, Sato H, Harada Y, et al. Diamond field-effect transistors with 1.3 a/mm drain current density by Al2O3 passivation layer. Jpn J Appl Phys. 2012;51:090112.
  • Kasu M, Ueda K, Ye H, et al. 2W/mm output power density at 1 GHz for diamond FETs. Electron Lett. 2005;41(22):1249–1250.
  • Nebel CE, Rezek B, Zrenner A. Electrical properties of the 2D-hole accumulation layer on hydrogen terminated diamond. Diamond Relat Mater. 2004;13(11–12):2031–2036.
  • Landstrass MI, Ravi KV. Hydrogen passivation of electrically active defects in diamond. Appl Phys Lett. 1989;55(14):1391–1393.
  • Grot SA, Gildenblat GS, Hatfield HCW, et al. The effect of surface treatment on the electrical properties of metal contacts to boron doped homoepitaxial diamond film. IEEE Electron Device Lett. 1990;11(2):100–102.
  • Imanishi S, Horikawa K, Oi N, et al. 3.8 W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity. IEEE Electron Device Lett. 2019;40(2):279–282.
  • Yu C, Zhou CJ, Guo JC, et al. 650 mW/mm output power density of H-terminated polycrystalline diamond MISFET at 10 GHz. Electron Lett. 2020;56(7):334–335.
  • Ueda K, Kasu M, Yamauchi Y, et al. Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz. IEEE Electron Device Lett. 2006;27(7):570–572.
  • Zhou CJ, Wang JJ, Guo JC, et al. Radiofrequency performance of hydrogenated diamond MOSFETs with alumina. Appl Phys Lett. 2019;114(6):063501.
  • Jingu Y, Hirama K, Kawarada H. Ultrashallow TiC source/drain contacts in diamond MOSFETs formed by hydrogenation-last approach. IEEE Trans Electron Device. 2010;57(5):966–972.
  • Kudara K, Imanishi S, Hiraiwa A, et al. High output power density of 2DHG diamond MOSFETs with thick ALD-Al2O3. IEEE Trans Electron Device. 2021;68(8):3942–3949.
  • Kudara K, Arai M, Suzuki Y, et al. Over 1 A/mm drain current density and 3.6 W/mm output power density in 2DHG diamond MOSFETs with highly doped regrown source/drain. Carbon. 2022;188:220–228.
  • Yamada H, Chayahara A, Mokuno Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond. Appl Phys Lett. 2014;104(10):102110.
  • Kim SW, Kawamata Y, Takaya R, et al. Growth of high-quality one-inch free-standing heteroepitaxial (0 0 1) diamond on (11–20) sapphire substrate. Appl Phys Lett. 2020;117(20):202102.
  • Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017;7:44462.
  • Wang JJ, He ZZ, Yu C, et al. Comparison of field-effect transistors on polycrystalline and single-crystal diamonds. Diamond Relat Mater. 2014;43:43–48.
  • Schroder DK. 2006. Semiconductor material and device. New York: Wiley. (Sect. 6.2).
  • Saha NC, Kasu M. Heterointerface properties of diamond MOS structures studied using capacitance–voltage and conductance–frequency measurements. Diamond Relat Mater. 2019;91:219–224.
  • Chen ZH, Fu Y, Kawarada H, et al. Microwave diamond devices technology: field-effect transistors and modeling. Int J Numer Model El. 2021; 34(3): 2800.
  • Yu XX, Hu WX, Zhou JJ, et al. 1 W/mm output power density for H-terminated diamond MOSFETs with Al2O3/SiO2 bi-layer passivation at 2 GHz. IEEE J Electron Device Soc. 2020;99:1.
  • Ivanov TG, Wei J, Shah PB, et al. Diamond RF transistor technology with ft = 41 GHz and fmax = 44 GHz. IEEE/MTT-S International Microwave Symposium. 2018. p. 1461.
  • Camarchia V, Cappelluti F, Ghione G, et al. RF power performance evaluation of surface channel diamond MESFETs. Solid State Electron. 2011;55(1):19–24.
  • Kasu M, Ueda K, Ye H, et al. High RF output power for H-terminated diamond FETs. Diamond Rel Mater. 2006;15(4–8):783–786.
  • Hirama K, Takayanagi H, Yamauchi S, et al. High-performance p-channel diamond MOSFETs with alumina gate insulator. IEEE International Electron Devices Meeting. 2007. p. 873.
  • Kubovic M, Kasu M, Kallfass I, et al. Microwave performance evaluation of diamond surface channel FETs. Diamond Rel Mater. 2004;13(4–8):802–807.
  • Yu X, Hu W, Zhou J, et al. 1.26 W/mm output power density at 10 GHz for Si3N4 passivated H-terminated diamond MOSFETs. IEEE Trans Electron Device. 2021;68(10):5068–5072.
  • Chen Z, Yu X, Zhou J, et al. Characterization of substrate-trap effects in hydrogen-terminated diamond metal-oxide-semiconductor field-effect transistors. IEEE Trans Electron Device. 2022;69(1):278–284.
  • Wu Y, Moore M, Saxler A, et al. 40 W/mm double field-plated HEMTs. 2006 64th Device Research Conference. 2006. p. 151–152.
  • Tadjer M, Anderson T, Ancona M, et al. GaN-on-diamond HEMT technology with TAVG = 176 °C at PDC,max = 56 W/mm measured by transient thermoreflectance imaging. IEEE Electron Device Lett. 2019;40(6):881–884.
  • Ohki T, Yamada A, Minoura Y, et al. An over 20-W/mm S-band InAlGaN/GaN HEMT with SiC/diamond-bonded heat spreader. IEEE Electron Device Lett. 2019;40(2):287–290.
1620
Favorite
Share

Related articles