Skip to main content

Science and technology of a transformational multifunctional ultrananocrystalline diamond (UNCD) coating

Orlando Auciello
Volume 2, Issue 1 (2022)
DOI: 10.1080/26941112.2022.2033606

Abstract

This review focuses on describing the fundamental/applied materials science and technological applications of a transformational multifunctional diamond-based material named ultranano­crytalline diamond (UNCDTM) in film form. The UNCDTM films are synthesized using microwave plasma chemical vapor deposition (MPCVD) and hot filament chemical vapor deposition (HFCVD), via patented Ar/CH4 gas flown into air evacuated chambers, using microwave power, or hot filaments’ surface, to crack CH4 molecules to generate C atoms and CHx (x = 1, 2, 3) species, which produce chemical reactions on substrates’ surfaces, producing diamond film with grain sizes in the range 3–5 nm (smallest grain size known today for any polycrystalline diamond film), providing the bases for the name UNCD. UNCD coatings exhibit a unique combination of properties, namely: (1) super high hardness and Young modulus, similar to the crystal gem of diamond; (2) lowest coefficient of friction compared to other diamond or diamond-like coatings; (3) no mechanical surface wear; (4) highest resistance to chemical attach by any corrosive fluid; (5) only diamond film exhibiting electrical conductivity via Nitrogen inserted in grain boundaries, binding to C atoms and providing electrons for electrical conduction, or B atoms substituting C atoms in the diamond lattice, providing electrons to the conduction band; and (6) best biocompatibility, since UNCD coatings are formed by C atoms (element of life in human DNA, cells/molecules). The UNCD films’ properties provide unique multifunctionalities, enabling new generations of industrial, electronic, high-tech, and implantable medical devices/prostheses, enabling substantial improvement in the way and quality of life of people worldwide.

Keywords

Diamond; coating; industrial; high-tech; medical; products

References

  • Spitsyn BV, Bouilov LL, Derjaguin BV. Vapor growth of diamond on diamond and other surfaces. J Cryst Growth 1981;52:219–226.
  • Matsumoto S, Sato Y, Tsutsumi M, et al. Growth of diamond particles from methane-hydrogen gas. J Mater Sci. 1982;17(11):3106–3112.
  • Matsumoto S. “Development of CVD Diamond Synthesis Techniques”, In: Proc. of 1st Symposium on Diamond and Diamond-like Films, Electrochem. Soc. Proc., New York. vol. 50. 1989. p. 89.
  • Kamo M, Sato Y, Matsumoto S, et al. Diamond synthesis from gas phase in microwave plasma. J Cryst Growth. 1983;62(3):642–644.
  • Matsumoto M, Hino M, Kobayashi T. Synthesis of diamond films in a RF induction thermal plasma. Appl Phys Lett. 1987;51(10):737–739.
  • Kurihara K, Sasaki K, Kawarada M, et al. High-rate synthesis of diamond by DC plasma jet chemical vapor deposition. Appl Phys Lett. 1988;52(6):437–438.
  • Dischler B, Wild C. Low-Pressure synthetic diamond: manufacturing and applications. Heidelberg: Springer; 1998.
  • Butler JE, Sumant AV. The CVD of nanodiamond materials. Chem Vap Deposition. 2008;14(7-8):145–160. vol
  • Gruen DM, Liu S, Krauss AR, et al. Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions. Appl Phys Lett. 1994;64(12):1502–1504.
  • Smalley RE. Discovering the fullerenes. Rev Mod Phys. 1997;69(3):723–730.
  • McCauley TG, Corrigan TD, Krauss AR, et al. Electron emission properties of Si field emitter arrays coated with nanocrystalline diamond from fullerene precursors. In: Proc. MRS, Symposium. “Electron Emission from Highly Covalent Materials.” vol. 498, 1998. p. 227.
  • Jiao S, Sumant AV, Kirk MA, et al. Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2. J Appl Phys. 2001;90(1):118–122.
  • Naguib N, Birrell J, Elam J, et al. A method to grow carbon thin films consisting entirely of diamond grains 3-5 nm in size and high-energy grain boundaries. US Patent #7,128,8893, 7,556,982. 2006.
  • Auciello O, Sumant AV. Status review of the science and technology of ultrananocrystalline diamond (UNCDTM) films and application to multifunctional devices. Diamond Relat Mater. 2010;19(7-9):699–718.
  • Shenderova OA, Gruen DM. Ultrananocrystalline diamond: Synthesis, properties and applications. Oxford, UK: Elsevier; 2006.
  • May PW, Harvey JN, Smith JA, et al. Re-evaluation of the mechanism for ultrananocrystalline diamond deposition from Ar∕CH4∕H2 gas mixtures. J Appl Phys. 2006;99(10):104907.
  • Xu Z, He Z, Song Y, et al. Topic review: Application of raman spectroscopy characterization in micro/nano-machining. Micromachines (Basel). 2018;9(7):361.
  • Birrell J, Gerbi JE, Auciello O, et al. Interpretation of the Raman spectra of ultrananocrystalline diamond. Diamond Relat Mater. 2005;14(1):86–92.
  • Zuiker D, Krauss AR, Gruen DM, et al. Characterization of diamond thin films by core-Level photo-absorption and UV excitation Raman spectroscopy. Mat Res Soc Proc. 1996;437:211.
  • Sumant AV, Auciello O, Liao M, et al. MEMS/NEMS based on Mono, nano, and ultrananocrystalline diamond films. MRS Bull. 2014;39(6):511–516.
  • Stoner BR, Ma G-HM, Wolter SD, et al. Characterization of bias-enhanced nucleation of diamond on silicon by in vacuo surface analysis and transmission electron microscopy. Phys Rev B. 1992;45(19):11067–11084.
  • Gerber S, Sattel S, Ehrhardt H, et al. Investigation of bias enhanced nucleation of diamond on silicon. J Appl Phys. 1996;79(8):4388.
  • Lee YC, Lin SJ, Chia CT, et al. Effect of processing para­meters on the nucleation behavior of nano-crystalline diamond film. Diamond Relat Mater. 2005;14(3-7):296–301.
  • Chen YC, Zhong XY, Konicek AR, et al. Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth. Appl Phys Lett. 2008;92(13):133113.
  • Zhong XY, Chen YC, Tai NH, et al. Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: an approach to interfacial chemistry analysis via chemical bonding mapping. J Appl Phys. 2009;105(3):034311.
  • Ding MQ, Krauss R, Auciello O, et al. Studies of field emission from bias-grown diamond thin films. J Vac Sci Technol B. 1999;17(2):705–709.
  • Bhattacharyya S, Auciello O, Birrell J, et al. Synthesis and characterization of nitrogen doped ultrananocrystalline diamond thin films. Appl Phys Lett. 2001;79(10):1441–1443.
  • Gruen DM, Krauss AR, Auciello O, et al. N-Type doping of NCD films with nitrogen and electrodes made there from US patent # 6,793,849 B1. 2004.
  • Birrell J, Carlisle JA, Auciello O, et al. Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond. Appl Phys Lett. 2002;81(12):2235–2237.
  • Zapol P, Sternberg M, Curtiss LA, et al. Tight binding molecular dynamics simulation of impurities in ultranancrystalline diamond grain boundaries. Phys Rev B. 2001;65(4):045403.
  • Heck PR, Staderman FJ, Isheim D, et al. Atom-Probe analyses of nano-diamonds from allende. Meteorit Planet Sci. 2014;49(3):453–467.
  • Fuentes-Fernandez EMA, Alcantar-Peña JJ, Lee G, et al. Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via hot filament chemical vapor deposition for scaling to large area applications. Thin Solid Films. 2016;603:62–68.
  • Alcantar-Peña JJ, de Obaldia E, Montes-Gutierrez, Kang K, et al. Fundamentals towards large area synthesis of multifunctional ultrananocrystalline diamond films via large area hot filament chemical vapor deposition bias enhanced nucleation/bias enhanced growth for fabrication of broad range of multifunctional devices. Diamond Relat Mater. 2017;78:1–11.
  • Huang B-R, Chia C-T, Chang M-C, et al. Bias effects on large area polycrystalline diamond films synthesized by the bias enhanced growth technique. Diamond Relat Mater. 2003;12(1):26–32.
  • Alves R, Amorim A, Eichenberger Neto J, et al. Filmes de diamante CVD em grandes áreas obtidos por crescimentos sucessivos em etapas. Revista Matéria. 2008;13(3):569–578.
  • Weng J, Liu F, Xiong LW, et al. Deposition of large area uniform diamond films by microwave plasma CVD. Vacuum. 2018;147:134–142.
  • Suna Q, Wang J. Study on the large area diamond film deposition in a self- built overmoded microwave power chemical vapor deposition device. Chem Eng Transactions. 2017;62:1129–1134.
  • Lee ST, Lam YW, Lin Z, et al. Pressure effect on diamond nucleation in a hot-filament CVD system. Phys Rev B. 1997;55(23):15937–15941.
  • Schwarz S, Rosiwal SM, Frank M, et al. Dependence of the growth rate, quality, and morphology of diamond coatings on the pressure during the CVD-process in an industrial hot-filament plant. Diamond Relat Mater. 2002;11(3-6):589–595.
  • Hao T, Zhang H, Shi C, et al. Nano-crystalline diamond films synthesized at low temperature and low pressure by hot filament chemical vapor deposition. Surf Coat Tech. 2006;201(3-4):801–806.
  • Liang X, Wang L, Zhu H, et al. Effect of pressure on nanocrystalline diamond films deposition by hot filament CVD technique from CH4/H2 gas mixture. Surf Coat Tech. 2007;202(2):261–267.
  • Advanced Diamond Technologies, Inc. Advanced Diamond Technologies, Inc. (www.thindiamond.com).
  • Uppireddi K, Weiner BR, Morell G. Synthesis of nanocrystalline diamond films by DC plasma-assisted argon-rich hot filament chemical vapor deposition. Diamond Relat Mater. 2008;17(1):55–59.
  • Makris TD, Giorgi R, Lisi N, et al. Bias enhanced nucleation of diamond on Si (100) in a vertical straight hot filament CVD. Diamond Relat Mater. 2005;14(3-7):318–322.
  • Zhou XT, Lai HL, Peng HY, et al. Heteroepitaxial nucleation of diamond on Si (100) via double bias assisted hot filament chemical vapor deposition. Diamond Relat Mater. 2000;9(2):134–139.
  • Janischowsky K, Ebert W, Kohn E. Bias enhanced nucleation of diamond on silicon (100) in a HFCVD system. Diamond Relat Mater. 2003;12(3-7):336–339.
  • Pecoraro S, Arnault JC, Werckmann J. BEN-HFCVD diamond nucleation on Si(111) investigated by HRTEM and nano-diffraction. Diamond Relat Mater. 2005;14(2):137–143.
  • Li Y, Li J, Wang Q, et al. Controllable growth of nanocrystalline diamond films by hot filament chemical vapor deposition method. J Nanosci Nanotech. 2009;9(2):1062–1065.
  • Ansari SG, Anh TL, Seo H-K, et al. Growth kinetics of diamond film with bias enhanced nucleation and H2/CH4/Ar mixture in a hot-filament chemical vapor deposition system. J Cryst Growth. 2004;265(3-4):563–570.
  • Auciello O, Pacheco S, Sumant AV, et al. Are diamonds a MEMS best friend? IEEE Microwave. 2007;8(6):61–75.
  • Auciello O, Birrell J, Carlisle JA, et al. Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films. J Phys Condens Matter. 2004;16(16):R539–R552.
  • Auciello O, Lee G. Science and technology of integrated piezoelectric oxide/ultrananocrystalline (UNCDTM) films for a new generation of biomedical MEMS/NEMS energy generation, drug delivery and sensor devices. Ch. 9 In: Auciello O, editor. Ultrananocrystalline diamond coatings for new generation High-Tech and medical devices.Cambridge Publisher (in press, June); 2022.
  • Lee G, Fuentes-Fernandez EMA, Lian G, et al. Heteroepitaxial BiFeO3/SrTiO3 nanolaminates with higher piezoresponse performance over stoichiometric BiFeO3 films. Appl Phys Lett. 2015;106(2):022905.
  • Cheng Y-W, Lin C-K, Chu Y-C, et al. Electrically conductive ultrananocrystalline diamond-coated natural graphite-copper anode for new long-life lithium-ion battery. Adv Mater. 2014;26(22):3724–3729.
  • Tzeng Y, Auciello O, Liu C-P, et al. Nanocrystalline-diamond/carbon and nanocrystalline-diamond/silicon composite electrodes for Li-based batteries US Patent # 9,196,905, 2015. 2015.
  • Yuan W-X, Wu QX, Luo ZK, et al. Effects of boron doping on the properties of ultrananocrystalline diamond films. J Elec Mater. 2014;43(4):1302–1306.
  • Tirado P, Alcantar-Peña JJ, de Obaldia E, et al. Boron doping of ultrananocrystalline diamond films by thermal diffusion process. MRS Commun. 2018;8(3):1111–1118.
  • Krauss AR, Ding MQ, Auciello O, et al. Electron field emission for ultrananocrystalline diamond films. J Appl Phys. 2001;89(5):2958–2967.
  • Hajra M, Ding M, Auciello O, et al. Effect of gases on the field emission properties of ultrananocrystalline diamond-coated silicon field emitter arrays. J Appl Phys. 2003;94(6):4079–4083.
  • Lin YC, Sankaran KJ, Chen YC, et al. Enhancing electron field emission properties of UNCD films through nitrogen incorporation at high substrate temperature. Diamond Relat Mater. 2011;20(2):191–195.
  • Getty SA, Auciello O, Sumant AV, et al. Characterization of nitrogen-incorporated ultrananocrystalline diamond as a robust cold cathode material. In: George T, Islam S, and Dutta A, editors. Micro-and nanotechnology sensors, systems, and Applications-II., Proc. SPIE. vol. 7679. 2010; p. 76791N-1.
  • Wang J, Firestone MA, Auciello O, et al. Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of aryl diazonium salts. Langmuir. 2004;20(26):11450–11456.
  • Yang W, Auciello O, Butler JE, et al. Preparation and Electrochemical Characterization of DNA-modified Nanocrystalline Diamond Films. Mat Res Soc Symp Proc. 2007; 737: F4 4. 1–4.6.
  • Bajaj P, Akin D, Gupta A, et al. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications. Biomed Microdevices. 2007;9(6):787–794.
  • Shi B, Jin Q, Chen L, et al. Fundamentals of ultrananocrystalline diamond (UNCD) thin films as biomaterials for developmental biology: embryonic fibroblasts growth on the surface of (UNCD) films. Diamond Relat Mater. 2009;18(2-3):596–600.
  • Jaffer H, Fredenburgh JC, Hirsh J, et al. Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost. 2015;13(1):S72–S81.
  • Hughes E. Advances in hydrophilic and hydrophobic coatings for medical devices. Med Des Briefs Mag. 2017.
  • Gabriela Montano-Figueroa A, Alcantar-Peña JJ, Tirado P, et al. Tailoring of polycrystalline diamond surfaces from hydrophilic to superhydrophobic via synergistic chemical plus microstructuring processes. Carbon. 2018;139:361–368.
  • Xiao X, Wang J, Carlisle JA, et al. In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. J Biomed Mater Res. 2006;77B(2):273–281.
  • Humayun MS, Dorn JD, da Cruz L, et al. Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology. 2012;119(4):779–788.
  • Zhou DD, Greenberg RJ. Microelectronic visual prostheses, biological and medical physics, biomedical engineering: Implantable neural prostheses 1: Devices and applications. Zhou DD, Greenbaum E, editors. Springer; 2010.
  • Xiao X, Birrell J, Gerbi JE, et al. Low temperature growth of ultrananocrystalline diamond. J Appl Phys. 2004;96(4):2232–2239.
  • Carlisle JA, Gruen DM, Auciello O, et al. A method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates US Patent # 7,556,982, 2009. 2009
  • Second Sight. Second Sight (https://secondsight.com).
  • Auciello O. Ultrananocrystalline diamond (UNCD) films as hermetic biocompatible/bioinert coating for encapsulation of eye implantable microchip to restore partial vision to blind people. Ch. 2 In: Auciello O, editor. Ultrananocrystalline diamond coatings for new generation High-Tech and medical devices. Cambridge Publisher (in press); June 2022.
  • Brånemark PI, Zarb G, Albrektsson T, (Eds) Introduction to osseointegration tissue-integrated prostheses - osseointegration in clinical dentistry. Chicago: Quintessence Publishing, Co., Inc; 1985; p. 11.
  • Ericsson I, Glantz PO, Brånemark PI. Titanium implants of brånemark type for oral rehabilitation of partially edentulous patients. Tandlakartidningen. 1989;81(24):1357.
  • Jacobs JJ, Gilbert JL, Urban RM. Current concepts review: corrosion of metal orthopaedical implants. J Bone Joint Surg. 1998;80:268.
  • Olmedo DG, Tasat D, Evelson P, et al. Biological response of tissues with macrophagic activity to titanium dioxide. J Biomed Mater Res Part A. 2008;84(4):1087–1093.
  • Rodriguez DC, Valderrama P, Wilson T, et al. Titanium corrosion mechanism in the oral environment: a retrieval study. Materials. 2013;6(11):5258–5274.
  • Urban R, Jacobs J, Tomlinson M, et al. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone and Joint Surg. 2000;82(A):457.
  • Tasat DR, Bruno ME, Domingo M, et al. Biokinetics and tissue response to ultrananocrystalline diamond nanoparticles employed as coating for biomedical devices. J. of Biomedical Materials: Applied Biomaterials. 2016;008:1.
  • Kang K, Auciello O, Olmedo DG, et al. “Science and Technology of Biocompatible Ultrananocrystalline Diamond (UNCDTM) Coatings for New Generation of Implantable Prostheses: First Application to Dental Implants and Artificial Hips”, Ch. 5 In: Auciello O, editor. Ultrananocrystalline diamond coatings for new generation High-Tech and medical devices., Cambridge Publisher (in press); June 2022.
  • Robertson J. Phys E. High dielectric constant oxides. Eur Phys J Appl Phys. 2004;28(3):265–291.
  • Alcantar-Peña JJ, Lee G, Fuentes-Fernandez EMA, et al. Science and technology of diamond films grown on HfO2 interface layer for transformational technologies. Diamond Relat Mater. 2016;69:221–228.
1568
Favorite
Share

Related articles