Skip to main content

Composite-pulse enhanced room-temperature diamond magnetometry

Yang Dong ,
Jing-Yan Xu ,
Shao-Chun Zhang ,
Yu Zheng ,
Xiang-Dong Chen ,
Wei Zhu ,
Guan-Zhong Wang ,
Guang-Can Guo ,
Fang-Wen Sun
+ 1 authors fewer
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2021.1898792

Abstract

The sensitivity of practical solid quantum sensing can be boosted up by increasing the number of probes. However, the effects of spin dephasing caused by inhomogeneous broadening and imperfect quantum control can reduce the fidelity of quantum control and the sensitivity of quantum sensing with the dense ensemble of probes, such as nitrogen-vacancy (NV) centers in diamond. Here, we present a robust and effective composite-pulse for high fidelity operation against inhomogeneous broadening and control errors via optimized modulation of the control field. Such a composite-pulse was verified on NV center to keep high fidelity quantum control up to a spectrum detuning as large as 110% of Rabi frequency. The sensitivity of the magnetometer with NV center ensemble was experimentally improved by a factor of 4, comparing to dynamical decoupling with a normal rectangular pulse. Our work marks an important step towards high trustworthy ultra-sensitive quantum sensing with imperfect quantum control in practical applications. The used principle is universal and not restricted to NV center ensemble magnetometer.

Keywords

Quantum sensing; inhomogeneous broadening; nitrogen-vacancy centers; composite-pulse method

References

  • Awschalom DD, Hanson R, Wrachtrup J, et al. Quantum technologies with optically interfaced solid-state spins. Nat Photon. 2018;12(9):516–527.
  • Rose BC, Huang D, Zhang ZH, et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science. 2018;361(6397):60–63.
  • Bhaskar MK, Sukachev DD, Sipahigil A, et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys Rev Lett. 2017;118(22):223603.
  • Herbschleb ED, Kato H, Maruyama Y, et al. Ultra-long coherence times amongst room-temperature solid-state spins. Nat Commun. 2019;10(1):1–6.
  • Dong Y, Chen XD, Guo GC, et al. Reviving the precision of multiple entangled probes in an open system by simple π-pulse sequences. Phys Rev A. 2016;94(5):052322.
  • Dong Y, Zheng Y, Li S, et al. Non-Markovianity-assisted high-fidelity Deutsch–Jozsa algorithm in diamond. npj Quantum Inf. 2018;4(1):1–6.
  • Chen X, Zou C, Gong Z, et al. Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light Sci Appl. 2015;4(1):e230–e230.
  • Ma WL, Liu RB. Angstrom-resolution magnetic resonance imaging of single molecules via wave-function fingerprints of nuclear spins. Phys Rev Appl. 2016;6(2):024019.
  • Wolf T, Neumann P, Nakamura K, et al. Subpicotesla diamond magnetometry. Phys Rev X. 2015;5(4):041001.
  • Dong Y, Chen XD, Guo GC, et al. Robust scalable architecture for a hybrid spin-mechanical quantum entanglement system. Phys Rev B. 2019;100(21):214103.
  • Wojciechowski AM, Karadas M, Huck A, et al. Contributed review: camera-limits for wide-field magnetic resonance imaging with a nitrogen-vacancy spin sensor. Rev Sci Instrum. 2018;89(3):031501.
  • Barry JF, Turner MJ, Schloss JM, et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc Natl Acad Sci USA. 2016;113(49):14133–14138.
  • Tetienne JP, Dontschuk N, Broadway DA, et al. Quantum imaging of current flow in graphene. Sci Adv. 2017;3(4):e1602429.
  • Glenn DR, Bucher DB, Lee J, et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature. 2018;555(7696):351–354.
  • Bauch E, Hart CA, Schloss JM, et al. Ultralong dephasing times in solid-state spin ensembles via quantum control. Phys Rev X. 2018;8(3):031025.
  • Dréau A, Jamonneau P, Gazzano O, et al. Probing the dynamics of a nuclear spin bath in diamond through time-resolved central spin magnetometry. Phys Rev Lett. 2014;113(13):137601.
  • Nizovtsev AP, Kilin SY, Pushkarchuk AL, et al. Non-flipping 13C spins near an NV center in diamond: hyperfine and spatial characteristics by density functional theory simulation of the C510 [NV] H252 cluster. New J Phys. 2018;20(2):023022.
  • Zhao N, Ho SW, Liu RB. Decoherence and dynamical decoupling control of nitrogen vacancy center electron spins in nuclear spin baths. Phys Rev B. 2012;85(11): 115303.
  • Yamamoto T, Umeda T, Watanabe K, et al. Extending spin coherence times of diamond qubits by high-temperature annealing. Phys Rev B. 2013;88(7):075206.
  • Nöbauer T, Angerer A, Bartels B, et al. Smooth optimal quantum control for robust solid-state spin magnetometry. Phys Rev Lett. 2015;115(19):190801.
  • Rondin L, Tetienne JP, Hingant T, et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep Prog Phys. 2014;77(5):056503.
  • Ziem F, Garsi M, Fedder H, et al. Quantitative nanoscale MRI with a wide field of view. Sci Rep. 2019;9(1):1–9.
  • Loretz M, Rosskopf T, Boss JM, et al. Single-proton spin detection by diamond magnetometry. Science. 2014 (retracted).
  • Loretz M, Boss JM, Rosskopf T, et al. Spurious harmonic response of multipulse quantum sensing sequences. Phys Rev X. 2015;5(2):021009.
  • Lang JE, Madhavan T, Tetienne JP, et al. Nonvanishing effect of detuning errors in dynamical-decoupling-based quantum sensing experiments. Phys Rev A. 2019;99(1):012110.
  • Levitt MH, Ernst RR. Composite pulses constructed by a recursive expansion procedure. J Magn Reson. 1983;55(2):247–254.
  • Suter D, Álvarez GA. Colloquium: protecting quantum information against environmental noise. Rev Mod Phys. 2016;88(4):041001.
  • Wang X, Bishop LS, Kestner JP, et al. Composite pulses for robust universal control of singlet–triplet qubits. Nat Commun. 2012;3(1):1–7.
  • Aiello CD, Hirose M, Cappellaro P. Composite-pulse magnetometry with a solid-state quantum sensor. Nat Commun. 2013;4(1):1–6.
  • Rong X, Geng J, Wang Z, et al. Implementation of dynamically corrected gates on a single electron spin in diamond. Phys Rev Lett. 2014;112(5):050503.
  • Dolde F, Bergholm V, Wang Y, et al. High-fidelity spin entanglement using optimal control. Nat Commun. 2014;5(1):1–9.
  • Rong X, Geng J, Shi F, et al. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nat Commun. 2015;6(1):1–7.
  • Epstein RJ, Mendoza FM, Kato YK, et al. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nat Phys. 2005;1(2):94–98.
  • Dolde F, Fedder H, Doherty MW, et al. Electric-field sensing using single diamond spins. Nat Phys. 2011;7(6):459–463.
  • Kim M, Mamin HJ, Sherwood MH, et al. Decoherence of near-surface nitrogen-vacancy centers due to electric field noise. Phys Rev Lett. 2015;115(8):087602.
  • Bowdrey MD, Oi DKL, Short AJ, et al. Fidelity of single qubit maps. Phys Lett A. 2002;294(5–6):258–260.
  • Degen CL, Reinhard F, Cappellaro P. Quantum sensing. Rev Mod Phys. 2017;89(3):035002.
  • Taylor JM, Cappellaro P, Childress L, et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys. 2008;4(10):810–816.
  • Li CH, Dong Y, Xu JY, et al. Enhancing the sensitivity of a single electron spin sensor by multi-frequency control. Appl Phys Lett. 2018;113(7):072401.
  • Maze JR, Taylor JM, Lukin MD. Electron spin decoherence of single nitrogen-vacancy defects in diamond. Phys Rev B. 2008;78(9):094303.
  • Liu GQ, Xing J, Ma WL, et al. Single-shot readout of a nuclear spin weakly coupled to a nitrogen-vacancy center at room temperature. Phys Rev Lett. 2017;118(15): 150504.
  • Pham LM, Bar-Gill N, Belthangady C, et al. Enhanced solid-state multispin metrology using dynamical decoupling. Phys Rev B. 2012;86(4):045214.
  • Rosenfeld EL, Pham LM, Lukin MD, et al. Sensing coherent dynamics of electronic spin clusters in solids. Phys Rev Lett. 2018;120(24):243604.
1415
Favorite
Share

Related articles