Skip to main content

Diamond with nitrogen: states, control, and applications

Yuting Zheng ,
Chengming Li ,
Jinlong Liu ,
Junjun Wei ,
Haitao Ye
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2021.1877021

Abstract

The burgeoning multi-field applications of diamond concurrently bring up a foremost consideration associated with nitrogen. Ubiquitous nitrogen in both natural and artificial diamond in most cases as disruptive impurity is undesirable for diamond material properties, eg deterioration in electrical performance. However, the feat of this most common element-nitrogen, can change diamond growth evolution, endow diamond fancy colors and even give quantum technology a solid boost. This perspective reviews the understanding and progress of nitrogen in diamond including natural occurring gemstones and their synthetic counterparts formed by high temperature high pressure (HPHT) and chemical vapor deposition (CVD) methods. The review paper covers a variety of topics ranging from the basis of physical state of nitrogen and its related defects as well as the resulting effects in diamond (including nitrogen termination on diamond surface), to precise control of nitrogen incorporation associated with selective post-treatments and finally to the practical utilization. Among the multitudinous potential nitrogen related centers, the nitrogen-vacancy (NV) defects in diamond have attracted particular interest and are still ceaselessly drawing extensive attentions for quantum frontiers advance.

Keywords

Diamond; nitrogen-related defect; nitrogen-termination; post treatment; quantum

References

  • Guyer RL, Koshland DE Jr. Diamond: glittering prize for materials science. Science. 1990; 250(4988): 1640–1643.
  • Breeding CM. Colored diamonds: the rarity and beauty of imperfection. Gems Gemology. 2018; 54(3): 274–277.
  • Renfro N, Koivula JI, Wang WY, et al. Synthetic gem materials in the 2000s: a decade in review. Gems Gemology. 2010; 46(4): 260–274.
  • Butler JE, Woodin RL, Brown LM, et al. Thin film diamond growth mechanisms. Philos Trans R Soc Lond. 1993; 342: 15–30.
  • Wort CJH, Balmer RS. Diamond as an electronic material. Mater Today. 2008; 11(1-2): 22–28.
  • Baker JM. Deducing atomic models for point defects in diamond: the relevance of their mechanism of formation. Diam Relat Mater. 2007; 16(2): 216–219.
  • Breeding CM, Shigley JE. The “TYPE” classification system of diamonds and its importance in gemology. Gems Gemology. 2009; 45(2): 96–111.
  • Field JE. The mechanical and strength properties of diamond. Rep Prog Phys. 2012; 75(12): 126505.
  • Nebel CE. Nitrogen-vacancy doped CVD diamond for quantum applications: a review. Semicond Semimet. 2020; 103: 14–18.
  • Ashfold MNR, Goss JP, Green BL, et al. Nitrogen in diamond. Chem Rev. 2020; 120(12): 5745–5794.
  • Khomich AV, Ralchenko VG, Vlasov AV, et al. Effect of high temperature annealing on optical and thermal properties of CVD diamond. Diam Relat Mater. 2001; 10(3-7): 546–551.
  • Vins VG, Pestryakov EV. Color centers in diamond crystals: their potential use in tunable and femtosecond lasers. Diam Relat Mater. 2006; 15(4-8): 569–571.
  • Aharonovich I, Greentree AD, Prawer S. Diamond photonics. Nature Photon. 2011; 5(7): 397–405.
  • Markham M, Twitchen D. The diamond quantum revolution. Phys World. 2020; 33(4): 39–43.
  • Atatüre M, Englund D, Vamivakas N, et al. Material platforms for spin-based photonic quantum technologies. Nat Rev Mater. 2018; 3(5): 38–51.
  • Rosskopf T, Dussaux A, Ohashi K, et al. Investigation of surface magnetic noise by shallow spins in diamond. Phys Rev Lett. 2014; 112(14): 147602.
  • Dunst S, Sternschulte H, Schreck M. Growth rate enhancement by nitrogen in diamond chemical vapor deposition—a catalytic effect. Appl Phys Lett. 2009; 94(22): 224101.
  • Fedortchouk Y. A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth Sci Rev. 2019; 193: 45–65.
  • Cohen H, Ruthstein S. Evaluating the color and nature of diamonds via EPR spectroscopy. Gems Gemology. 2018; 54(3): 276.
  • Willems B, Tallaire A, Achard J. Optical study of defects in thick undoped CVD synthetic diamond layers. Diam Relat Mater. 2014; 41: 25–33.
  • Weerdt FD, Royen JV. Defects in coloured natural diamonds. Diam Relat Mater. 2001; 10: 474–479.
  • Magaña SE, McElhenny G, Breeding CM, et al. Comparison of gemological and spectroscopic features in type IIa and Ia natural pink diamonds. Diam Relat Mater. 2020; 105: 107784.
  • Magaña SE, Ardon T, Zaitsev AM. LPHT annealing of brown-to-yellow type Ia diamonds. Diam Relat Mater. 2017; 77: 159–170.
  • https: //www.gia.edu/gia-news-research-sothebys-diamond-auction-2013-shor.
  • Simakov SK. On the origin of large type IIa gem diamonds. Ore Geol Rev. 2018; 102: 195–203.
  • Melton GL, McNeill J, Stachel T, et al. Trace elements in gem diamond from Akwatia, Ghana and DeBeers Pool, South Africa. Chem Geol. 2012; 314-317: 1–8.
  • Collins AT. Things we still don’t know about optical centres in diamond. Diam Relat Mater. 1999; 8(8-9): 1455–1462.
  • Chrenko RM, Tuft RE, Strong HM. Transformation of the state of nitrogen in diamond. Nature. 1977; 270(5633): 141–144.
  • Yin LW, Li MS, Cui JJ, et al. Planar defects and dislocations in HPHT as-grown diamond crystals. Diam Relat Mater. 2002; 11(2): 268–272.
  • Schwander M, Partes K. A review of diamond synthesis by CVD processes. Diam Relat Mater. 2011; 20(9): 1287–1301.
  • Lin LTS, Popovici G, Mori Y, et al. Study of color centers in hot-filament CVD diamond films by cathodoluminescence and photoluminescence and their correlations with film quality. Diam Relat Mater. 1996; 5(11): 1236–1245.
  • Palyanov YN, Borzdov YM, Khokhryakov AF, et al. Effect of nitrogen impurity on diamond crystal growth processes. Cryst Growth Des. 2010; 10(7): 3169–3175.
  • Liu T, Raabe D. Influence of nitrogen doping on growth rate and texture evolution of chemical vapor deposition diamond films. Appl Phys Lett. 2009; 94(2): 021119.
  • Locher R, Wild C, Herres N, et al. Nitrogen stabilized 100 texture in chemical vapor deposited diamond films. Appl Phys Lett. 1994; 65(1): 34–36.
  • Achard J, Silva F, Brinza O, et al. Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals. Diam Relat Mater. 2007; 16(4-7): 685–689.
  • Chayahara A, Mokuno Y, Horino Y, et al. The effect of nitrogen addition during high rate homoepitaxial growth of diamond by microwave plasma CVD. Diam Relat Mater. 2004; 13(11-12): 1954–1958.
  • Müller‐Sebert W, Wörner E, Fuchs F, et al. Nitrogen induced increase of growth rate in chemical vapor deposition of diamond. Appl Phys Lett. 1996; 68(6): 759–760.
  • Hainschwang T. Gemstone analysis by spectroscopy. In: Encyclopedia of spectroscopy and spectrometry . 3rd ed. Netherlands: Elsevier; 2017. p. 18–24.
  • Zaitsev AM. Optical properties of diamond: a data handbook. SpringerBerlin Heidelberg; 2010.
  • Burns RC, Cvetkovic V, Dodge CN, et al. Growth-sector dependence of optical features in large synthetic diamonds. J Cryst Growth. 1990; 104(2): 257–279.
  • Samlenski R, Haug C, Brenn R, et al. Incorporation of nitrogen in chemical vapor deposition diamond. Appl Phys Lett. 1995; 67(19): 2798–2800.
  • Liu X, Chen X, Singh DJ, et al. Boron–oxygen complex yields n-type surface layer in semiconducting diamond. Proc Natl Acad Sci USA. 2019; 116(16): 7703–7711.
  • Ulbricht R, van der Post ST, Goss JP, et al. Single substitutional nitrogen defects revealed as electron acceptor states in diamond using ultrafast spectroscopy. Phys Rev B. 2011; 84(16): 165202.
  • Shao T, Lyu F, Guo X, et al. The role of isolated nitrogen in phosphorescence of high-temperaturehigh-pressure synthetic type IIb diamonds. Carbon. 2020; 167: 888–895.
  • Lawson SC, Fisher D, Hunt DC, et al. On the existence of positively charged single-substitutional nitrogen in diamond. J Phys Condens Matter. 1998; 10(27): 6171–6180.
  • Kiflawi I, Mainwood A, Kanda H, et al. Nitrogen interstitials in diamond. Phys Rev B. 1996; 54(23): 16719–16726.
  • Liggins S, Newton ME, Goss JP, et al. Identification of the dinitrogen 〈001〉 split interstitial H1a in diamond. Phys Rev B. 2010; 81(8): 085214.
  • Goss JP, Coomer BJ, Jones R, et al. Extended defects in diamond: the interstitial platelet. Phys Rev B. 2003; 67(16): 165208.
  • Lühmann T, Raatz N, John R, et al. Screening and engineering of colour centres in diamond. J Phys D Appl Phys. 2018; 51(48): 483002.
  • Budker D. The sense of colour centres. Nature Phys. 2011; 7(6): 453–454.
  • Wyk van JA, Woods GS. Electron spin resonance of excited states of the H3 and H4 centres in irradiated type Ia diamonds. J Phys Condens Matter. 1995; 7(29): 5901–5911.
  • Davies G, Lawson SC, Collins AT, et al. Vacancy-related centers in diamond. Phys Rev B. 1992; 46(20): 13157–13170.
  • Zaitsev AM. Vibronic spectra of impurity-related optical centers in diamond. Phys Rev B. 2000; 61(19): 12909–12922.
  • Doherty MW, Manson NB, Delaney P, et al. The nitrogen-vacancy colour centre in diamond. Phys Rep. 2013; 528(1): 1–45.
  • Acosta V, Hemmer P. Nitrogen-vacancy centers: physics and applications. MRS Bull. 2013; 38(2): 127–130.
  • Felton S, Edmonds AM, Newton ME, et al. Electron paramagnetic resonance studies of the neutral nitrogen vacancy in diamond. Phys Rev B. 2008; 77(8): 081201.
  • Barson MSJ, Krausz E, Manson NB, et al. The fine structure of the neutral nitrogen-vacancy center in diamond. Nanophotonics. 2019; 8(11): 1985–1991.
  • Goldman ML, Sipahigil A, Doherty MW, et al. Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers. Phys Rev Lett. 2015; 114(14): 145502.
  • Fu KMC, Santori C, Barclay PE, et al. Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys Rev Lett. 2009; 103(25): 256404.
  • Balasubramanian G, Neumann P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 2009; 8(5): 383–387.
  • Goss JP, Briddon PR, Jones R, et al. Donor and acceptor states in diamond. Diam Relat Mater. 2004; 13(4-8): 684–690.
  • Teraji T, Yamamoto T, Watanabe K, et al. Homoepitaxial diamond film growth: high purity, high crystalline quality, isotopic enrichment, and single color center formation. Phys Status Solidi A. 2015; 212(11): 2365–2384.
  • Mittiga T, Hsieh S, Zu C, et al. Imaging the local charge environment of nitrogen-vacancy centers in diamond. Phys Rev Lett. 2018; 121(24): 246402.
  • Goss JP, Ewels CP, Briddon PR, et al. Bistable N2–H complexes: the first proposed structure of a H-related colour-causing defect in diamond. Diam Relat Mater. 2011; 20(7): 896–901.
  • Miyazaki T, Okushi H, Uda T. Shallow donor state due to nitrogen-hydrogen complex in diamond. Phys Rev Lett. 2002; 88(6): 066402.
  • Goss JP, Briddon PR, Papagiannidis S, et al. Interstitial nitrogen and its complexes in diamond. Phys Rev B. 2004; 70(23): 235208.
  • Lozovoi A, Daw D, Jayakumar H, et al. Dark defect charge dynamics in bulk chemical-vapor-deposition-grown diamonds probed via nitrogen vacancy centers. Phys Rev Mater. 2020; 4(5): 053602.
  • Hainschwang T, Fritsch E, Notari F, et al. The origin of color in natural C center bearing diamonds. Diam Relat Mater. 2013; 39: 27–40.
  • Stacey A, O’Donnell KM, Chou J-P, et al. Nitrogen terminated diamond. Adv Mater Interfaces. 2015; 2(10): 1500079.
  • Chou JP, Retzker A, Gali A. Nitrogen-terminated diamond (111) surface for room-temperature quantum sensing and simulation. Nano Lett. 2017; 17(4): 2294–2298.
  • Kawai S, Yamano H, Sonoda T, et al. Nitrogen-terminated diamond surface for nanoscale NMR by shallow nitrogen-vacancy centers. J Phys Chem C. 2019; 123(6): 3594–3604.
  • Chandran M, Shasha M, Michaelson S, et al. Nitrogen termination of single crystal (100) diamond surface by radio frequency N2 plasma process: An in-situ x-ray photoemission spectroscopy and secondary electron emission studies. Appl Phys Lett. 2015; 107(11): 111602.
  • Botsoa J, Sauvage T, Adam MP, et al. Optimal conditions for NV− center formation in type-Ib diamond studied using photoluminescence and positron annihilation spectroscopies. Phys Rev B. 2011; 84(12): 125209.
  • Fritsch E, Rondeau B, Hainschwang T, et al. A contribution to the understanding of pink color in diamond: the unique, historical «Grand Condé. Diam Relat Mater. 2007; 16(8): 1471–1474.
  • Humble P, Hannink RHJ. Plastic deformation of diamond at room temperature. Nature. 1978; 273(5657): 37–40.
  • Pantea C, Gubicza J, UngáR T, et al. High-pressure effect on dislocation density in nanosize diamond crystals. Diam Relat Mater. 2004; 13(10): 1753–1756.
  • Jones R. Dislocations, vacancies and the brown colour of CVD and natural diamond. Diam Relat Mater. 2009; 18(5-8): 820–826.
  • Fujita N, Jones R, Öberg S, et al. Large spherical vacancy clusters in diamond – origin of the brown colouration? Diam Relat Mater. 2009; 18(5-8): 843–845.
  • Fujita N, Jones R, Öberg S, et al. Theoretical investigation on the interaction of nitrogen with dislocations in single crystal CVD diamond. Diam Relat Mater. 2008; 17(2): 123–126.
  • Hounsome LS, Jones R, Martineau PM, et al. Origin of brown coloration in diamond. Phys Rev B. 2006; 73(12): 125203.
  • Zaitsev AM, Kazuchits NM, Kazuchits VN, et al. Nitrogen-doped CVD diamond: nitrogen concentration, color and internal stress. Diam Relat Mater. 2020; 105: 107794.
  • Magaña SE, Ardon T, Smit KV, et al. Natural-color pink, purple, red, and brown dimonds: band of many colors. Gems Gemology. 2018; 54: 352–377.
  • Wang WY, Moe KS. CVD Synthetic diamond with fancy vivid orange color. Gems Gemology. 2014; 50(4): 299.
  • Breeding CM, Eaton-Magaña S, Shigley JE. Natural-color green diamonds: a beautiful conundrum. Gems Gemology. 2018; 54(1): 2–27.
  • Gu TT, Wang WY. Optical defects in milky type IaB diamonds. Diam Relat Mater. 2018; 89: 322–329.
  • Collins AT. The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy. Diam Relat Mater. 2003; 12(10-11): 1976–1983.
  • Fritsch E, Shigley JE, Moses T, et al. A Green diamond a study of chameleonism. Leeds, England: Maney and Sons; 1995.
  • Hainschwang T, Notari F, Fritsch E, et al. Natural, untreated diamonds showing the A, B and C infrared absorptions (“ABC diamonds”), and the H2 absorption. Diam Relat Mater. 2006; 15(10): 1555–1564.
  • https: //www.gia.edu/diamond-quality-factor.
  • https: //shopidc.com/pages/education.
  • Byrne KS, Butler JE, Wang WY, et al. Chameleon diamonds: thermal processes governing luminescence and a model for the color change. Diam Relat Mater. 2018; 81: 45–53.
  • Yamamoto T, Umeda T, Watanabe K, et al. Extending spin coherence times of diamond qubits by high-temperature annealing. Phys Rev B. 2013; 88(7): 075206.
  • Kalish R. Ion implantation in diamond for quantum information processing (QIP): doping and damaging. Netherlands: Elsevier; 2014.
  • Chakravarthi S, Moore C, Opsvig A, et al. Window into NV center kinetics via repeated annealing and spatial tracking of thousands of individual NV centers. Phys Rev Mater. 2020; 4(2): 023402.
  • Zaitsev AM, Moe KS, Wang W. Defect transformations in nitrogen-doped CVD diamond during irradiation and annealing. Diam Relat Mater. 2018; 88: 237–255.
  • Hood RQ, Kent PRC, Needs RJ, et al. Quantum Monte Carlo study of the optical and diffusive properties of the vacancy defect in diamond. Phys Rev Lett. 2003; 91(7): 076403.
  • Kalish R, Reznik A, Prawer S, et al. Ion‐implantation‐induced defects in diamond and their annealing: experiment and simulation. Phys Stat Sol (a). 1999; 174(1): 83–99.
  • Preciado‐Flores S, Meléndrez R, Chernov V, et al. Thermal annealing effects on the TL response of beta‐irradiated HPHT Ib type synthetic diamond. Phys Stat Sol (a). 2007; 204(9): 3041–3046.
  • Huang GF, Jia XP, Yin JW, et al. Preparation of IaA-type diamond crystals containing a high concentration of nitrogen by annealing {111}-oriented N-doped diamond crystals. Int J Refract Met Hard Mater. 2013; 41: 517–521.
  • Rueda FA, Gordillo N, Ynsa MD, et al. Lattice damage in 9-MeV-carbon irradiated diamond and its recovery after annealing. Carbon. 2017; 123: 334–343.
  • Charles SJ, Butler JE, Feygelson BN, et al. Characterization of nitrogen doped chemical vapor deposited single crystal diamond before and after high pressure, high temperature annealing. Phys Stat Sol (a). 2004; 201(11): 2473–2485.
  • Mainwood A. Nitrogen and nitrogen-vacancy complexes and their formation in diamond. Phys Rev B. 1994; 49(12): 7934–7940.
  • Lombardi EB, Mainwood A, Osuch K, et al. Computational models of the single substitutional nitrogen atom in diamond. J Phys Condens Matter. 2003; 15(19): 3135–3149.
  • Avalos V, Dannefaer S. Vacancy-type defects in brown diamonds investigated by positron annihilation. Phys B Condens Matter. 2003; 340-342: 76–79.
  • Deák P, Aradi B, Kaviani M, et al. Formation of NV centers in diamond: a theoretical study based on calculated transitions and migration of nitrogen and vacancy related defects. Phys Rev B. 2014; 89(7): 075203.
  • Kanda H, Watanabe K. Change of cathodoluminescence spectra of natural diamond with HPHT treatment. Diam Relat Mater. 2004; 13(4-8): 904–908.
  • Dobrinets IA, Vins VG, Zaitsev AM. HPHT-treated diamonds: diamonds forever. Heidelberg, New York, Dordrecht, London: Springer; 2013.
  • Fisher D. Brown diamonds and high-pressure high temperature treatment. Lithos. 2009; 112: 619–624.
  • Collins AT, Kanda H, Kitawaki H. Colour changes produced in natural brown diamonds by high-pressure, high-temperature treatment. Diam Relat Mater. 2000; 9(2): 113–122.
  • Lai MY, Breeding CM, Stachel T, et al. Spectroscopic features of natural and HPHT-treated yellow diamonds. Diam Relat Mater. 2020; 101: 107642.
  • Kanda H, Ahmadjan A, Kitawaki H. Change in cathodoluminescence spectra and images of type II high-pressure synthetic diamond produced with high pressure and temperature treatment. Diam Relat Mater. 2005; 14(11-12): 1928–1931.
  • Kupriyanov IN, Palyanov YN, Kalinin AA, et al. The effect of HPHT treatment on the spectroscopic features of type IIb synthetic diamonds. Diam Relat Mater. 2008; 17(7-10): 1203–1206.
  • Vins VG, Yelisseyev AP, Lobanov SS, et al. APHT treatment of brown type Ia natural diamonds: dislocation movement or vacancy cluster destruction?Diam Relat Mater. 2010; 19(7-9): 829–832.
  • Meng Y-f, Yan C-s, Lai J, et al. Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing. PNAS. 2008; 105(46): 17620–17625.,
  • Tallaire A, Barjon J, Brinza O, et al. Dislocations and impurities introduced from etch-pits at the epitaxial growth resumption of diamond. Diam Relat Mater. 2011; 20(7): 875–881.
  • López-Santos C, Yubero F, Cotrino J, et al. Lateral and in-depth distribution of functional groups on diamond-like carbon after oxygen plasma treatments. Diam Relat Mater. 2011; 20(2): 49–56.
  • Kazuchits NM, Rusetsky MS, Kazuchits VN, et al. Aggregation of nitrogen in synthetic diamonds annealed at high temperature without stabilizing pressure. Diam Relat Mater. 2016; 64: 202–207.
  • Kazuchits NM, Rusetsky MS, Kazuchits VN, et al. Cathodoluminescence of synthetic diamonds annealed at high temperature without stabilizing pressure. Diam Relat Mater. 2017; 74: 41–44.
  • Kazuchits NM, Rusetsky MS, Kazuchits VN, et al. Comparison of HPHT and LPHT annealing of Ib synthetic diamond. Diam Relat Mater. 2019; 91: 156–164.
  • Liu S, Liu JL, Li CM, et al. The mechanical enhancement of chemical vapor deposited diamond film by plasma low-pressure/high-temperature treatment. Carbon. 2013; 65: 365–370.
  • Riedel M, Ristein J, Ley L. Recovery of surface conductivity of H-terminated diamond after thermal annealing in vacuum. Phys Rev B. 2004; 69(12): 125338.
  • Acosta VM, Bauch E, Ledbetter MP, et al. Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys Rev B. 2009; 80(11): 115202.
  • Tang Z, Chiba T, Nagai Y, et al. Positron annihilation study for enhanced nitrogen-vacancy center formation in diamond by electron irradiation at 77 K. Appl Phys Lett. 2014; 104(17): 172101.
  • Huang Z, Li WD, Santori C, et al. Diamond nitrogen-vacancy centers created by scanning focused helium ion beam and annealing. Appl Phys Lett. 2013; 103(8): 081906.
  • Newton M, Campbell B, Twitchen D, et al. Recombination enhanced diffusion of self-interstitial atoms and vacancy interstitial recombination in diamond. Diamond Related Materials. 2002; 11(3-6): 618–622.
  • Capelli M, Heffernan AH, Ohshima T, et al. Increased nitrogen-vacancy centre creation yield in diamond through electron beam irradiation at high temperature. Carbon. 2019; 143: 714–719.
  • Zaitsev AM, Moe KS, Wang W. Optical centers and their depth distribution in electron irradiated CVD diamond. Diamond Related Materials. 2017; 71: 38–52.
  • Hainschwang T, Respinger A, Notari F, et al. A comparison of diamonds irradiated by high fluence neutrons or electrons, before and after annealing. Diamond Related Materials. 2009; 18(10): 1223–1234.
  • Osterkamp C, Scharpf J, Pezzagna S, et al. Increasing the creation yield of shallow single defects in diamond by surface plasma treatment. Appl Phys Lett. 2013; 103(19): 193118.
  • Shanley TW, Martin AA, Aharonovich I, et al. Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond. Appl Phys Lett. 2014; 105(6): 063103.
  • Chen XD, Zou CL, Sun FW, et al. Optical manipulation of the charge state of nitrogen-vacancy center in diamond. Appl Phys Lett. 2013; 103(1): 013112.
  • Bhaumik A, Sachan R, Narayan J. Tunable charge states of nitrogen-vacancy centers in diamond for ultrafast quantum devices. Carbon. 2019; 142: 662–672.
  • Shimizu M, Makino T, Iwasaki T, et al. Charge state modulation of nitrogen vacancy centers in diamond by applying a forward voltage across a p–i–n junction. Diamond Related Materials. 2016; 63: 192–196.
  • Murai T, Makino T, Kato H, et al. Engineering of Fermi level by nin diamond junction for control of charge states of NV centers featured. Appl Phys Lett. 2018; 112(11): 111903.
  • Prawer S, Greentree AD. Diamond for quantum computing. Science. 2008; 320(5883): 1601–1603.
  • Dolde F, Doherty MW, Michl J, et al. Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond. Phys Rev Lett. 2014; 112(9): 097603.
  • Robledo L, Childress L, Bernien H, et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature. 2011; 477(7366): 574–578. 
  • Bucher DB, Craik D, Backlund MP, et al. Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy. Nat Protoc. 2019; 14(9): 2707–2747.
  • Labanowski D, Bhallamudi VP, Guo Q, et al. Voltage-driven, local, and efficient excitation of nitrogen-vacancy centers in diamond. Sci Adv. 2018; 4(9): eaat6574.
  • Lesik M, Plisson T, Toraille L, et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science. 2019; 366(6471): 1359–1362.
  • Hsieh S, Bhattacharyya P, Zu C, et al. Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science. 2019; 366(6471): 1349–1354.
  • Yang M, Yuan Q, Gao J, et al. A Diamond Temperature Sensor Based on the Energy Level Shift of Nitrogen-Vacancy Color Centers. Nanomaterials. 2019; 9(11): 1576.
  • Liu Y, Guo H, Zhang W, et al. Nanoscale detection of faint machinery vibration using the NV center in diamond. Phys Lett A. 2020; 384(32): 126832.
  • Sage DL, Arai K, Glenn DR, et al. Optical magnetic imaging of living cells. Nature. 2013; 496(7446): 486–489.
  • Glenn DR, Lee K, Park H, et al. Single-cell magnetic imaging using a quantum diamond microscope. Nat Methods. 2015; 12(8): 736–738.
  • Hui YY, Hsiao WW, Haziza S, et al. Single Particle Tracking of Fluorescent Nanodiamonds in Cells and Organisms. Current Opinion in Solid State Materials Science. 2017; 21(1): 35–42. 
  • Ho D, Wang CHK, Chow EKH. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine. Sci Adv. 2015; 1(7): e1500439.
  • Moreva E. The biosensing with NV centers in diamond: Related challenges. Int J Quantum Inform. 2020; 18(01): 1941023.
  • Meijer J, Burchard B, Domhan M, et al. Generation of single-color centers by focused nitrogen implantation. Appl Phys Lett. 2005; 87(26): 261909.
  • Mamin HJ, Kim M, Sherwood MH, et al. Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor. Science. 2013; 339(6119): 557–560.
  • Webb JL, Clemen JD, Troise L, et al. Nanotesla sensitivity magnetic field sensing using a compact diamond nitrogen-vacancy magnetometer. Appl Phys Lett. 2019; 114(23): 231103.
  • Simpson DA, Ryan RG, Hall LT, et al. Electron paramagnetic resonance microscopy using spins in diamond under ambient conditions. Nat Commun. 2017; 8(1): 458.
  • Mazhandu F, Mathieson K, Coleman C, et al. Experimental simulation of hybrid quantum systems and entanglement on a quantum computer. Appl Phys Lett. 2019; 115(23): 233501.
  • Dhomkar S, Henshaw J, Jayakumar H, et al. Long-term data storage in diamond. Sci Adv. 2016; 2(10): e1600911.
  • Liu RB. A diamond age of masers. Nature. 2018; 555(7697): 447–449.
  • Jin L, Pfender M, Aslam N, et al. Proposal for a room-temperature diamond maser. Nat Commun. 2015; 6(1): 8251.
  • Hensen B, Bernien H, DréAu AE, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature. 2015; 526(7575): 682–686.
  • Shi FZ, Zhang Q, Wang PF, et al. Single-protein spin resonance spectroscopy under ambient conditions. Science. 2015; 347(6226): 1135–1138.
  • Bradley CE, Randall J, Abobeih MH, et al. A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute. Phys Rev X. 2019; 9(3): 031045.
  • Li R, Kong F, Zhao PJ, et al. Nanoscale electrometry based on a magnetic-field-resistant spin sensor. Phys Rev Lett. 2020; 124(24): 247701.
  • Gali A. Theory of the neutral nitrogen-vacancy center in diamond and its application to the realization of a qubit. Phys Rev B. 2009; 79(23): 235210.
  • Stachel T, Harris JW. The origin of cratonic diamonds - constraints from mineral inclusions. Ore Geol Rev. 2008; 34(1-2): 5–32. − 
  • Taylor WR, Jaques AL, Ridd M. Nitrogen-defect aggregation characteristics of some australasian diamonds time-temperature constraints on the source regions of pipe and alluvial diamonds. Am Mineral. 1990; 75: 1290−1310.
  • Cartigny P, Palot M, Thomassot E, et al. Diamond formation: a stable isotope perspective. Annu Rev Earth Planet Sci. 2014; 42(1): 699–732.
  • Waldermann FC, Olivero P, Nunn J, et al. Creating diamond color centers for quantum optical applications. Diamond Related Materials. 2007; 16(11): 1887–1895.
7801
Favorite
Share

Related articles