Skip to main content

Design and optimization of diamond mid-infrared phase shifter

Chengke Chen ,
Zhi He ,
Ancha Xu ,
Xiao Li ,
Meiyan Jiang ,
Tao Xu ,
Bo Yan ,
Xiaojun Hu
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2020.1869485


Herein, the mid-infrared (7.7–13.7 μm) diamond-based phase shifter was designed and optimized by finite-element analysis. The ridge-shaped diamond waveguide is designed and doped to form the internal p–n structure, and the internal carrier distribution is changed by applying forward and reverse voltages to change the effective refractive index to achieve the effect of π-phase shift. The results show that when p-doping concentration is 4 × 1017 cm−3 and n doping concentration is 1 × 1018 cm−3, upon the reverse voltage (8 V) is applied, the change of the real part of effective refractive index (ΔR) is 1.6 × 10−5, and the length of the phase shifter (L) required to realize the π-phase shift is 241 mm; upon the forward voltage (–8 V) is applied, ΔR increases to 3.2 × 10−4, and the length of the phase shifter required is shortened to 12.03 mm. Such a short length is relatively easy in industrial production. In order to make the refractive index distribution more uniform, the carrier concentration has been optimized as 1 × 1017 cm−3 for p-type and 4 × 1017 cm−3 for n-type, respectively.


Mid-infrared; ridge waveguide; diamond; phase shifter; refractive index


  • Mahrous H, Azmy M, Afifi A, et al. Design of compact, high-speed and low-loss silicon-on-silica electro-optic modulators. Semicond Sci Technol. 2020; 35(9): 095017.
  • Zhai WS, Xin YX, Xie MT, et al. Phase noise suppression for RF signal remote fiber transmission using phase balance compensation feedback network in phase shifter. Optik 2019; 177: 131–135.
  • Bondarenko TV, Shchedrin IS. Phase tuning system for travelling wave resonator. Probl At Sci Tech. 2013; 88(6): 82–85.
  • Deng H, Bogaerts W. Pure phase modulation based on a silicon plasma dispersion modulator. Opt Express. 2019; 27(19): 27191–27201.
  • Gao RQ, Song Q, Liu H, et al. Design of near-infrared reconfigurable metalens on Silicon-On-Insulator (SOI) platform with Fabry-Perrot phase shifter. Opt Commun. 2019; 446: 56–63.
  • Png CE, Sun MJ, Lim ST, et al. Numerical modeling and analysis for high-efficiency carrier-depletion silicon rib-waveguide phase shifters. IEEE J Sel Top Quantum Electron. 2016; 22: 8.
  • Tang J, et al. 2016 25th Wireless and Optical Communi­cation Conference. New York: IEEE; 2016.
  • Ito F, Matsuura M, Tanifuji T. A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55 mu m. IEEE J Quantum Electron. 1989; 25(7): 1677–1681.
  • Rosa MF, Rathgeber L, Elster R, et al. Design of a carrier-depletion Mach-Zehnder modulator in 250 nm silicon-on-insulator technology. Adv Radio Sci. 2017; 15: 269–281.
  • Ling L, et al. Phase modulation efficiency and transmission loss of silicon optical phase shifters. IEEE J Quantum Electron. 2005; 41: 250–257.
  • Ikeda T, Takahashi K, Kanamori Y, et al. Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator. Opt Express. 2010; 18(7): 7031–7037.
  • Pfeifle J, Alloatti L, Freude W, et al. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Opt Express. 2012; 20(14): 15359–15376.
  • Sun LF, Tang JY. A new texturing technique of monocrystalline silicon surface with sodium hypochlorite. Appl Surf Sci. 2009; 255(22): 9301–9304.
  • Lai C, Guo X, Wang M, et al. Effect of polyethylene glycol on corrosion of fresh macroporous silicon in 1.0 M NaOH and application in determination of porosity and thickness by gravimetric measurement. Phosphorus Sulfur Silicon Relat. Elem. 2020; 195(8): 651–659.
  • Arcifa A, Rossi A, Espinosa-Marzal RM, et al. Influence of environmental humidity on the wear and friction of a silica/silicon tribopair lubricated with a hydrophilic ionic liquid. ACS Appl Mater Interfaces. 2016; 8(5): 2961–2973.
  • Ootani Y, Xu JX, Hatano T, et al. Contrasting roles of water at sliding interfaces between silicon-based materials: first-principles molecular dynamics sliding simulations. J Phys Chem C. 2018; 122(19): 10459–10467.
  • He L, Li Z. Enhancement of a fire detection algorithm by eliminating solar reflection in the mid-IR band: application to AVHRR data. Int J Remote Sens. 2012; 33(22): 7047–7059.
  • Gao W, et al. Paper presented at: The Remote Sensing and Modeling of Ecosystems for Sustainability III; 2006 Aug 14; San Diego, CA, USA.
  • Massimetti F, Coppola D, Laiolo M, et al. Volcanic hot-spot detection using SENTINEL-2: a comparison with MODIS–MIROVA thermal data series. Remote Sens. 2020; 12(5): 820.
  • Worden A, Dehn J, Webley P. Frequency based satellite monitoring of small scale explosive activity at remote north Pacific volcanoes. J Volcanol Geotherm Res. 2014; 286: 1–14.
  • Zhang B, et al. Battlespace digitization and network-centric warfare II. In: Suresh R, Roper WE, editors. Proceedings of SPIE. Bellingham: SPIE-International Society for Optical Engineering; 2002; vol. 4741; p. 345–350.
  • Haas J, Catalán EV, Piron P, et al. Polycrystalline diamond thin-film waveguides for mid-infrared evanescent field sensors. ACS Omega. 2018; 3(6): 6190–6198.
  • Malmström M, Karlsson M, Forsberg P, et al. Waveguides in polycrystalline diamond for mid-IR sensing. Opt Mater Express. 2016; 6(4): 1286.
  • Wang X, Karlsson M, Forsberg P, et al. Diamonds are a spectroscopist’s best friend: thin-film diamond mid-infrared waveguides for advanced chemical sensors/biosensors. Anal Chem. 2014; 86(16): 8136–8141.
  • Chen C, Xu A, Li X, et al. Design and performance of diamond-based mid-infrared sensor. Phys Status Solidi A. 2020; 217(18): 2000076.
  • Baehr-Jones T, Hochberg M, Wang G, et al. Optical modulation and detection in slotted silicon waveguides. Opt Express. 2005; 13(14): 5216–5226.
  • Soref R, Larenzo J. All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE J Quantum Electron. 1986; 22(6): 873–879.
  • Petousi D, Zimmermann L, Voigt K, et al. Performance limits of depletion-type silicon Mach–Zehnder modulators for telecom applications. J Lightwave Technol. 2013; 31(22): 3556–3562.

Related articles