Skip to main content

Room temperature direct bonding of diamond and InGaP in atmospheric air

Jianbo Liang ,
Yuji Nakamura ,
Yutaka Ohno ,
Yasuo Shimizu ,
Yasuyoshi Nagai ,
Hongxing Wang ,
Naoteru Shigekawa
Volume 1, Issue 1 (2021)
DOI: 10.1080/26941112.2020.1869435


A new technique of diamond and InGaP room temperature bonding in atmospheric air is reported. Diamond substrate cleaned with H2SO4/H2O2 mixture solution is bonded to InGaP exposed after removing the GaAs layer by the H2SO4/H2O2/H2O mixture solution. The bonding interface is free from interfacial voids and mechanical cracks. An atomic intermixing layer with a thickness of about 8 nm is formed at the bonding interface, which is composed of C, In, Ga, P, and O atoms. After annealing at 400 °C, no exfoliation occurred along the bonding interface. An increase of about 2 nm in the thickness of the atomic intermixing layer is observed, which plays a role in alleviating the thermal stress caused by the difference of the thermal expansion coefficient between diamond and InGaP. The bonding interface demonstrates high thermal stability to device fabrication processes. This bonding method has a large potential for bonding large diameter diamond and semiconductor materials.


Diamond atmospheric air room temperature bonding; heat dissipation; atmospheric air; interfacial microstructure; thermal boundary conductance


  • Yamamoto Y, Imai T, Tanabe K, et al. The measurement of thermal properties of diamond. Diamond Relat Mater. 1997; 6(8): 1057–1061.
  • Nosaeva K, Weimann N, Rudolph M, et al. Erratum: Improved thermal management of InP transistors in transferred-substrate technology with diamond heat-spreading layer. Electron Lett. 2015; 51(13): 1010–1012.
  • Cho J, Francis D, Altman D, et al. Phonon conduction in GaN-diamond composite substrate. J Appl Phys. 2017; 121(5): 055105.
  • Käding OW, Rösler M, Zachai R, et al. Lateral thermal diffusivity of epitaxial diamond films. Diamond Relat Mater. 1994; 3(9): 1178–1182.
  • Sun H, Pomeroy J, Simon R, et al. Temperature-dependent thermal resistance of GaN-on-diamond HEMT wafers. IEEE Electron Device Lett. 2016; 37(5): 621–624.
  • Zhou Y, Anaya J, Pomeroy J, et al. Barrier-layer optimization for enhanced GaN-on-diamond device cooling. ACS Appl Mater Interfaces. 2017; 9(39): 34416–34422.
  • Matsumae T, Kurashima Y, Umezawa Y, et al. Room-temperature bonding of single-crystal diamond and Si using Au/Au atomic diffusion bonding in atmospheric air. Microelectron Eng. 2018; 195: 68–73.
  • Minoura Y, Ohki T, Okamoto N, et al. Surface activated bonding of SiC/diamond for thermal management of high-output power GaN HEMTs. Jpn J Appl Phys. 2020; 59 (Suppl G): SGGD03.
  • Mu F, He R, Suga T. Room temperature GaN-diamond bonding for high-power GaN-on-diamond devices. Scr Mater. 2018; 150: 148–151.
  • Cheng Z, Mu F, Yates L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices. ACS Appl Mater Interfaces. 2020; 12(7): 8376–8384.
  • Liang J, Masuya S, Kasu M, et al. Realization of direct bonding of single crystal diamond and Si substrates. Appl Phys Lett. 2017; 110(11): 111603.
  • Liang J, Masuya S, Kim S, et al. Stability of diamond/Si bonding interface during device fabrication process. Appl Phys Express. 2019; 12(1): 016501.
  • Matsumae T, Kurashima Y, Umezawa H, et al. Hydrophilic direct bonding of diamond (111) substrate using treatment with H2SO4/H2O2. Jpn J Appl Phys. 2020; 59 (Suppl B): SBBA01.
  • Choi S, Peake GM, Keeler GA, et al. Thermal design and characterization of heterogeneously integrated InGaP/GaAs HBTs. IEEE Trans Compon Packag Manuf Technol. 2016; 6(5): 740–748.
  • Pierściński K, Pierścińska D, Iwińska M, et al. Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers. J Appl Phys. 2012; 112(4): 043112.
  • Humbert B, Hellala N, Ehrhardt JJ, et al. X-ray photoelectron and Raman studies of microwave plasma assisted chemical vapour deposition (PACVD) diamond films. Appl Surf Sci. 2008; 254(20): 6400–6409.
  • Wang C, Huang N, Zhuang H, et al. Photochemical functionalization of diamond films using a short carbon chain acid. Chem Phys Lett. 2016; 646: 87–90.
  • López-Escalante MC, Gabás M, García I, et al. Differences between GaAs/GaInP and GaAs/AlInP interfaces grown by movpe revealed b depth profiling and angle-resolved X-ray photoelectron spectroscopies. Appl Surf Sci. 2016; 360: 477–484.
  • Hönle M, Oberhumer P, Hingerl K, et al. Mechanism of indium thin oxide//indium tin oxide direct wafer bonding. Thin Solid Films. 2020; 704: 137964.
  • Straessle R, Pétremand Y, Briand D, et al. Evaluation of thin film indium bonding at wafer level. Procedia Eng. 2011; 25: 1493–1496.
  • Liang J, Zhou Y, Masuya S, et al. Annealing effect of surface-activated bonded diamond/Si interface. Diamond Relat Mater. 2019; 93: 187–192.
  • Liang J, Nishida S, Arai M, et al. Effects of thermal annealing process on the electrical properties of p+-Si/n-SiC heterojunctions. Appl Phys Lett. 2014; 104(16): 161604.
  • Howlader MMR, Zhang F. Void-free strong bonding of surface activated silicon wafers from room temperature to annealing at 600 °C. Thin Solid Film. 2010; 519(2): 804–808.
  • Liang J, Ohno Y, Yamashita Y, et al. Characterization of nanoscopic Cu/diamond interfaces prepared by surface-activated bonding: implications for thermal management. ACS Appl Nano Mater. 2020; 3(3): 2455–2462.
  • Takagi H, Maeda R, Hosoda N, et al. Transmission electron microscope observations of Si/Si interface bonded at room temperature by Ar beam surface activation. Jpn J Appl Phys. 1999; 38 (Part 1, No. 3A): 1589–1594.
  • Takagi H, Kikuchi K, Maeda R, et al. Surface activated boding of silicon wafers at room temperature. Appl Phys Lett. 1996; 68(16): 2222–2224.
  • Mu F, Cheng Z, Shi J, et al. High thermal boundary conductance across bonded heterogeneous GaN-SiC interfaces. ACS Appl Mater Interfaces. 2019; 11(36): 33428–33434.
  • Al Mohtar A, Tessier G, Ritasalo R, et al. Thickness-dependent thermal properties of amorphous insulating thin films measured by photoreflectance microscopy. Thin Solid Films. 2017; 642: 157–162.
  • Cheng Z, Mu F, You T, et al. Thermal transport across ion-cut monocrystalline β-Ga2O3 thin films and bonded β-Ga2O3–SiC interfaces. ACS Appl Mater Interfaces. 2020; 12(40): 44943–44951.